Interferometric instrument provided with an arrangement for...

Optics: measuring and testing – By light interference – Having light beams of different frequencies

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C356S511000, C356S497000

Reexamination Certificate

active

06252669

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to an interferometric instrument for scanning the rough surfaces of a test object. The interferometric instrument of the present invention includes a radiation generating unit, which emits briefly coherent radiation, and a first beam splitter for generating a first and second beam component. According to the present invention, one beam component is aimed at the surface to be sensed, and the other beam component is aimed at a device with a reflective element for periodically changing the light path. The interferometric instrument of the present invention further includes an interference element, which causes the radiation coming from the surface and the radiation coming from the reflecting device to interfere with one another, and a photodetector which absorbs the radiation.
BACKGROUND INFORMATION
A known interferometric instrument is described in the publication by T. Dresel, G. Häusler, H. Vanzke entitled “Three-Dimensional Sensing of Rough Surfaces by Coherence Radar”, App. Opt., Vol. 3, No. 7, dated Mar. 1, 1992. This publication proposes an interferometer with a briefly coherent light source and a piezoelectric mirror for sensing rough surfaces. In the measuring instrument, a first beam component in the form of a light wave radiated back from a test object has a second beam component in the form of a reference wave superimposed upon it. The two light waves have a very short coherence length (just a few &mgr;m) so that the interference contrast reaches its maximum when the optical path difference is zero. A reflecting element in the form of a piezoelectric mirror is provided for changing the light path of the reference wave. The distance to the test object can be determined by comparing the position of the piezoelectric mirror with the time at which the interference maximum occurs. However, the precise measurement of the interference maximum and its assignment to the light path is relatively complicated.
SUMMARY OF THE INVENTION
An object of the present invention is to provide an interferometric instrument with a simplified design and increased measuring accuracy. The present invention therefore calls for an arrangement which produces a frequency shift between the two interfering beam components to be provided in the optical path of the first beam component and/or in the optical path of the second beam component.
The arrangement producing a frequency shift between the two interfering beam components can be used to carry out analyses using heterodyne interferometric techniques. This makes it possible to determine the time at which the interference maximum occurs. With its simple design, the instrument can therefore precisely measure the distance to a difficult-to-access test object relatively easily. Details regarding the heterodyne interferometric method itself can be found in the literature.
A simple measuring instrument design is obtained, for example, by designing the arrangement as an acousto-optical modulator driven by a modulator driver which is positioned between the first beam splitter and the test object in the optical path of the first beam component.
The device for changing the light path has an acousto-optical deflector arrangement with at least two acousto-optical deflectors, followed by the stationary reflecting element, which is positioned in the optical path of the second beam component in order to change its light path. The deflectors are frequency-modulated and arranged in relation to the incoming second beam component and to the reflecting element so that the second beam component supplied to the interference element determines the change in its light path when it is deflected in the deflectors. Because of this arrangement, a simplified and more accurate analysis is achieved, since the use of a mechanically moving reflecting element is avoided. The light path can be very precisely determined and assigned to the interference maximum.
Since the two deflectors are driven by two deflector drivers with slightly different carrier frequencies, causing the second beam component to undergo a frequency shift, it is no longer necessary to use an additional acousto-optical modulator to generate the heterodyne frequency. Instead, the existing acousto-optical deflectors, which produce a change in the light path, are used to generate the heterodyne frequency. If the modulation frequency of the carrier frequencies is around 10 MHZ, for example, the slight frequency difference between the carrier frequencies can amount to 0.5 MHZ. The deflector drivers can consist of two driver stages of a deflector driver unit.
To achieve a simple design, the modulation frequency of the carrier frequencies can be generated by a common control unit, to which the two deflector drivers can also be connected. With a simple design for accurate analysis, for example, the first deflector deflects the incoming beam component around an angle variable over time as a function of the frequency. The second deflector resets the angular deflection so that the second beam component continues to move in the direction of incidence parallel to the first deflector, and the reflecting element is designed as a diffraction grating oriented at an angle to the beam component leaving the second deflector so that the beam component is radiated back in the direction of incidence.
According to the present invention, signal processing and analysis can be achieved by combining the control unit and a driving unit to form an analysis circuit. Information about the modulation frequency of the carrier frequencies is sent to the analysis unit, which also receives the output signal of the photodetector, and the analysis circuit can be used to measure the distance to the measuring point on the measuring object on the basis of the frequency information and the output signal.
In a suitable embodiment, a collimator is positioned between the radiation generating unit and the first beam splitter, while a second beam splitter is located between the beam splitter and the test object in order to direct the first beam component to the test object via a focusing lens and to direct the first beam component reflected from the test object to the interference element in the form of an additional beam splitter. In addition, a third beam splitter is positioned between the first beam splitter and the first deflector and used to direct the second beam component returning from the first deflector to the additional beam splitter so that it will interfere with the first beam component reflected from the test object.


REFERENCES:
patent: 5321501 (1994-06-01), Swanson et al.
patent: 39 06 118 (1990-08-01), None
patent: 41 08 944 (1992-09-01), None
patent: 43 36 318 (1995-04-01), None
patent: 195 22 262 (1997-01-01), None
patent: 2 325 739 (1998-12-01), None
Dresel et al., “Three Dimensional Sensing of Rough Surfaces By Coherence Radar”, App. Opt., vol. 3, No. 7, Mar. 1, 1992.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Interferometric instrument provided with an arrangement for... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Interferometric instrument provided with an arrangement for..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Interferometric instrument provided with an arrangement for... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2463810

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.