Cytokine signal regulators

Chemistry: natural resins or derivatives; peptides or proteins; – Proteins – i.e. – more than 100 amino acid residues

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C514S012200

Reexamination Certificate

active

06201106

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to nucleic acid and amino acid sequences of cytokine signal regulators and to the use of these sequences in the diagnosis, treatment, and prevention of cell proliferative and immune disorders.
BACKGROUND OF THE INVENTION
Cytokines are chemicals produced by one cell to affect a response in another cell. Cytokines are secreted proteins, found in the extracellular environment, which interact with specific target cells to communicate information regarding the status of the organism. In this way, cytokines control the survival, growth, and differentiation of cells by eliciting an appropriate biological response in the target tissue. For example, cytokines are produced in response to a microbial infection and trigger increased white blood cell production, function, and chemotaxis. Cytokines may be constitutively produced to maintain a steady state, such as continued cell survival and selection within the nervous system. Examples of cytokines include growth factors, interleukins, and interferons.
Cytokines interact with a target through receptors expressed on the surface of the responsive cell. Cytokines bind with hemopoietin receptors, receptor kinases, and tumor necrosis factor (TNF)
erve growth factor (NGF) receptors by bringing together two receptor subunits. This dimerization of receptor subunits transmits a signal through the plasma membrane to the cell cytoplasm. In the case of protein kinase receptors, such as the receptors for epidermal growth factor (EGF) and insulin, the juxtaposition of the two receptor subunit cytoplasmic domains activates their intrinsic tyrosine kinase activity. As a result, the subunits phosphorylate each other. The resulting phosphorylated tyrosine residues then interact with cytoplasmic proteins containing src homology 2 (SH2) domains. SH2-containing proteins that interact with phosphorylated receptor molecules include phosphatidylinositol 3′-kinase, src kinase family members, GRB2, and shc. These SH2 containing proteins are often associated with other cytoplasmic proteins, such as members of the small, monomeric GTP-binding protein families Ras and Rho, and phosphatases, such as the phosphotyrosine phosphatase SHP-2. The signaling complexes formed by these interactions can initiate signal cascades, such as the kinase cascade involving raf and mitogen activated protein (MAP) kinase, which result in transcriptional regulation and cytoskeleton reorganization. Hemopoietin and TNF/NGF receptors, though they have no intrinsic kinase activity, still activate many of the same signal cascades within responding cells.
Many of the kinases involved in cytokine signaling cascades were first identified as products of oncogenes in cancer cells in which kinase activation was no longer subject to normal cellular controls. In fact, about one third of the known oncogenes encode protein kinases. Furthermore, cellular transformation (oncogenesis) is often accompanied by increased tyrosine phosphorylation activity (Carbonneau, H. and Tonks, N. K. (1992) Annu. Rev. Cell Biol. 8:463-93). Thus, the cell must have regulatory systems which keep the cytokine signaling cascades under appropriate control.
Eps8 is a protein which associates with and is phosphorylated by the EGF receptor. Human tumor cell lines contain high constitutive levels of tyrosine-phosphorylated Eps8, and overexpression of Eps8 in NIH3T3 cells expressing the EGF receptor (EGFR) leads to an enhanced mitogenic response and cell overgrowth (Provenzano, C. et al. (1998) Exp. Cell Res. 242:186-200). A family of molecules, which include ABI (Abl interactor protein)-l and ABI-2/e3B1, interact with tyrosine kinases, such as the src-like kinase Abl, and Eps8. Overexpression of ABI-2/e3B1 in NIH3T3 cells expressing EGFR inhibits the mitogenic response and cell growth. Thus, the ABI family of proteins function as negative regulators of cytokine signaling (Ziemnicka-Kotula, D. et al. (1998) J. Biol. Chem. 273:13681-13692).
The SH2-containing phosphotyrosine phosphatases, SHP-1 and SHP-2, are involved in cytokine signaling. SHP-1, the hemopoietic cell phosphatase, is a potent inhibitor of signaling, whereas SHP-2 is a positive signal transducer for several cytokines. A family of transmembrane glycoproteins, called SIRPs (signal regulatory proteins), are substrates of tyrosine kinases. Phosphorylated SIRPs bind to SHP-2 and have a negative effect on cell response induced by cytokines, including an inhibition of growth factor-induced DNA synthesis. This inhibition correlates with reduced MAP kinase activation in SIRP-transfected NIH3T3 cells stimulated with insulin or EGF. SIRP overexpression also suppressed transformation of NIH3T3 cells by a retrovirus carrying the v-fms oncogene (Kharitonenkov, A. et al. (1997) Nature 386:181-186).
The discovery of new cytokine signal regulators and the polynucleotides encoding them satisfies a need in the art by providing new compositions which are useful in the diagnosis, prevention, and treatment of cell proliferative and immune disorders.
SUMMARY OF THE INVENTION
The invention features substantially purified polypeptides, cytokine signal regulators, referred to collectively as “CKSR” and individually as “CKSR-1” and “CKSR-2”. In one aspect, the invention provides a substantially purified polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:2, and fragments thereof.
The invention further provides a substantially purified variant having at least 90% amino acid identity to at least one of the amino acid sequences selected from the group consisting of SEQ ID NO:1, SEQ ID NO:2, and fragments thereof. The invention also provides an isolated and purified polynucleotide encoding the polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:2, and fragments thereof. The invention also includes an isolated and purified polynucleotide variant having at least 70% polynucleotide sequence identity to the polynucleotide encoding the polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:2, and fragments thereof.
Additionally, the invention provides an isolated and purified polynucleotide which hybridizes under stringent conditions to the polynucleotide encoding the polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:2, and fragments thereof. The invention also provides an isolated and purified polynucleotide having a sequence which is complementary to the polynucleotide encoding the polypeptide comprising the amino acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:2, and fragments thereof.
The invention also provides an isolated and purified polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:3, SEQ ID NO:4, and fragments thereof. The invention further provides an isolated and purified polynucleotide variant having at least 70% polynucleotide sequence identity to the polynucleotide sequence selected from the group consisting of SEQ ID NO:3, SEQ ID NO:4, and fragments thereof. The invention also provides an isolated and purified polynucleotide having a sequence which is complementary to the polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:3, SEQ ID NO:4, and fragments thereof.
The invention also provides a method for detecting a polynucleotide in a sample containing nucleic acids, the method comprising the steps of (a) hybridizing the complement of the polynucleotide sequence to at least one of the polynucleotides of the sample, thereby forming a hybridization complex; and (b) detecting the hybridization complex, wherein the presence of the hybridization complex correlates with the presence of a polynucleotide in the sample. In one aspect, the method further comprises amplifying the polynucleotide prior to hybridization.
The invention further provides an expression vector containing at least a fragment of the polyn

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Cytokine signal regulators does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Cytokine signal regulators, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Cytokine signal regulators will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2463346

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.