Optical channel waveguide amplifier

Optical waveguides – Planar optical waveguide – Thin film optical waveguide

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C385S123000, C385S124000, C385S125000, C372S006000, C359S341430

Reexamination Certificate

active

06236793

ABSTRACT:

CROSS-REFERENCE TO RELATED APPLICATIONS
This application relates to the following commonly assigned patent applications:
U.S. patent application Ser. No. 09/121,455, filed Jul. 23, 1998, by McCallion et al., and entitled “METHOD FOR FABRICATING AN OPTICAL WAVEGUIDE.”
U.S. patent application Ser. No. 09/121,454, filed Jul. 23, 1998, by Lawrence et al., and entitled “OPTICAL WAVEGUIDE WITH DISSIMILAR CORE AND CLADDING MATERIALS, AND LIGHT EMITTING DEVICE EMPLOYING THE SAME” now U.S. Pat. No. 6,141,475.
These applications are hereby incorporated herein by reference in their entirety.
TECHNICAL FIELD
The present invention relates in general to an optical amplifier employing the principles of amplification by stimulated emission, and more particularly, to an optical channel waveguide for use in a fiber optic system to amplify an attenuated optical signal employing stimulated emissions.
BACKGROUND OF THE INVENTION
There continues to be considerable interest in producing optical amplifiers for amplifying weak optical signals in both local and trunk optical networks. The high data rates and low optical attenuation associated with fiber optic lengths are well-established and continue to become more appreciated as fiber lengths become more economical compared with electrical coaxial cable alternatives. In spite of the relatively low magnitude of optical signal loss during transmission, the intrinsic linear attenuation law of lightwave energy in optical fibers necessitates optical repeater nodes to amplify and/or regenerate the digital optical bitstreams or analog signals in long-haul terrestrial and undersea communication systems. Typically, unrepeated distances extend from 30 to 70 kilometers in length, depending upon the fiber loss at the selected transmission wavelength, which is ordinarily 1.31 or 1.55 microns, respectively.
One non-invasive approach to amplifying an optical signal in a fiber optic is presented in U.S. Pat. Nos. 4,955,025 and 5,005,175 entitled, “Fiber-Optic Lasers and Amplifiers” and “Erbium-Doped Fiber Amplifier,” respectively. In these patents, a doped optical fiber is transversely coupled to a pump so that a weak optical input signal at a specific wavelength within the rare-earth gain profile experiences a desired amplification. Pumping is effected by a separate laser or lamp which emits photons of appropriate energy, i.e., higher than that of the signal wavelength. Electrons in the doped fiber are excited from the ground state to one or more pump bands. The electrons then decay an amount corresponding to the wavelength at which the device operates. When a photon at the laser wavelength interacts with an excited atom, stimulated emission occurs. An output photon can thus originate from either previous spontaneous emission, stimulated emission, or an input signal.
Since erbium-doped amplifiers only operate at a specific wavelength, i.e., 1.53 &mgr;m-1.55 &mgr;m, other approaches to non-invasive optical amplifiers, operable for example at 1310 nm, are under investigation using semiconductor materials and variations of the rare-earth doped fibers. To date, however, serious problems have plagued development of these devices. Namely, semiconductor amplifiers have been unable to provide sufficient gain, without still having significant noise problems. Rare-earth doped fiber amplifiers have also suffered from a variety of problems.
For example, neodymium (Nd) doped fibers have problems in obtaining sufficient gain at 1310 nm while maintaining the high quality, low-loss characteristics of the optical fiber. Specifically, excited state absorption in silica-based, Nd-doped fiber push the spectral range of any reasonable gain out to beyond 1330 nm resulting in substantial reduction in the usable spectrum. Further, using non-silica fibers, such as fluorozirconate or phosphate glass fibers, poses significant fabrication problems and raises questions of environmental stability. The alternative to neodymium in the 1300 nm window in optical fiber is Praseodymium (Pr), which also has had its share of difficulties. As with Nd-doped silica fiber, Pr-doped fiber requires a non-silica fiber host to achieve sufficient gain to be usable. In fact, to date only fluorozirconate (ZBLAN) fiber has proven capable of generating sufficient gain. Unfortunately, Pr-doped fibers, ZBLAN or otherwise, also require pumping at a wavelength of 1020 nm, which is not a standard laser transition. Thus, there have been significant problems generating the needed power levels at these odd wavelengths.
In view of the above, there remains a need in the optical communications art for an improved optical amplifier and amplification approach providing amplification characteristics commensurate with those attained by erbium-doped fibers at 1550 nm, but operable at any optical wavelength employed within an optical fiber, such as 1310 nm. The present invention provides an optical amplifier architecture and amplification process which addresses this need.
DISCLOSURE OF THE INVENTION
Briefly described, the present invention comprises in one aspect an optical waveguide which includes a core of active material exhibiting optical fluorescence when stimulated. The core has a propagation axis extending from an input surface to an output surface thereof. The input surface intersects the propagation axis at a non-orthogonal angle, and a cladding at least partially surrounds the core. The input surface of the core allows both an optical signal and a pump to be concurrently input to the core, where the optical signal undergoes amplification by stimulated emissions of the active material driven by the pump. An amplified optical signal is ultimately output through the output surface of the core.
In another aspect, the present invention comprises an optical amplifier which includes an optical waveguide having a first end and a second end. The optical waveguide includes a core of active material exhibiting optical fluorescence when stimulated. The core has a propagation axis extending from an input surface at the first end to an output surface at the second end of the optical waveguide. The input surface intersects the propagation axis at a non-orthogonal angle, and a cladding at least partially surrounds the core. The input surface allows both an optical signal and a pump to be concurrently input to the core, where the optical signal undergoes amplification by stimulated emissions of the active material driven by the pump. The optical amplifier further includes a first coating disposed over the first end of the optical waveguide. The first coating is anti-reflective of the optical signal at a predetermined signal wavelength and is reflective of the pump at a predetermined pump wavelength. Signal delivery optics are provided adjacent to the first end of the optical waveguide for focusing the optical signal through the input surface into the core of the optical waveguide; and pump deliver optics are provided near the first end of the optical waveguide and at an angle to the propagation axis of the core. The pump delivery optics focus the pump for reflection off the first coating at the input surface into the core.
In a further aspect, a method is provided for amplifying an optical signal. The method includes: providing an optical waveguide having a core of active material exhibiting optical fluorescence when stimulated, the core having a propagation axis extending from an input surface to an output surface, the input surface intersecting the propagation axis at a non-orthogonal angle, and a first coating disposed over the input surface of the core, the first coating being anti-reflective of the optical signal and reflective of the pump; inputting the optical signal into the core through the first coating and the input surface; and inputting the pump to the core by reflecting the pump off the first coating at the input surface, wherein both the optical signal and the pump are concurrently input to the core, and the optical signal undergoes amplification by stimulated emissions of the active material driven by the pump.
In a still

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Optical channel waveguide amplifier does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Optical channel waveguide amplifier, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Optical channel waveguide amplifier will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2462278

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.