Electricity: circuit makers and breakers – Electric switch details – Actuators
Reexamination Certificate
1999-03-18
2001-03-13
Scott, J. R. (Department: 2832)
Electricity: circuit makers and breakers
Electric switch details
Actuators
C464S179000, C464S185000
Reexamination Certificate
active
06201200
ABSTRACT:
FIELD OF THE INVENTION
In the instant invention relates to manually actuated program controls, and more specifically to user interface knob locking mechanisms for use therewith.
BACKGROUND OF THE INVENTION
Program controls, especially those used in the appliance industry, typically include a control section which receives user input via a user-actuated knob coupled through a control shaft. The technology utilized for the control mechanism varies depending upon the cost and sophistication of the particular application, and may include cam operated timers or electronic controls. A common feature of these control mechanisms however, is that they operate based upon a rotational position of a control shaft through which a user selects the particular cycle desired. A familiar application of such controls is in a typical washer or dryer used in home and industry.
One of the most common user interfaces utilized in the appliance industry is the push/pull control interface. This popular control interface utilizes a user actuated control knob coupled to the control shaft of the program control. The various cycles available are selected by the user by pushes the control knob inward followed by a rotation thereof to the desired program cycle as displayed to the user on the front control panel of a typical washer or dryer. Once the user control knob has been rotated to the appropriate position as typically indicated by a selector line on the control knob, the user then pulls the control knob outward to begin the selected program cycle. If, at any point during the operation of the appliance, the user decides to terminate the current cycle, the user simply pushes in on the control knob to interrupt the operation of the appliance.
As can be well imagined, there must be some mechanism to hold the user interface control knob onto the control shaft to allow for proper operation of the controller without having the control knob pulled off the control shaft. This mechanism must also allow for the control knob to be moved from the control shaft to accommodate removal of the appliance control from the control panel in the event of failure thereof. While a control panel could include a hole of suitable diameter to allow the control knob to be pulled therethrough, such does not present an aesthetically desirable configuration. Therefore, a typical appliance includes a small hole through the front control panel of a size sufficient only to accommodate the control shaft itself, and not the much larger control knob. The primary mechanism for holding the control knob on the control shaft is a simple friction fit between the outer diameter of the control shaft and the inner diameter of the control knob. In this way, the unit is assembled by forcing the control knob on the end of the control shaft once assembled in the control panel of the appliance. Obviously, the force of friction holding the control knob on the control shaft must be greater than the force required to be applied by a user in pulling the knob outward to interrupt a current cycle or allow for selection of a new cycle during normal operation. With this friction fit it is still possible to remove the control knob from the control shaft to allow for servicing or replacement of the appliance control by applying sufficient force to overcome the force of friction holding the knob thereon.
A problem exists with this design however, in that, over time, the fit between the outer diameter of the control shaft and the inner diameter of the control knob becomes worn. Once this begins to happen, pulling of the control knob to interrupt the current cycle tends to also remove the control knob from the end of the control shaft. While this situation is initially only a slight inconvenience for a user requiring only that he force the control knob back on the control shaft, once this process has been repeated a few times the inner diameter of the control knob becomes more and more worn to the point where pulling on the control knob no longer actuates the control shaft to interrupt the current cycle. Once this occurs, the consumer is forced to either replace the controller, the knob, or utilize a pair of pliers or other mechanism to properly actuate the control shaft. While all of the above are workable solutions to this problem, the increased cost and aggravation associated with the primary user interface tends to deteriorate the appliance manufacturer's reputation in the market and destroys product loyalty as dissatisfied consumers voice their discontent.
In an attempt to overcome this problem associated with a friction fit between the control knob and the control shaft of a program controller for an appliance, many of the plant manufacturers are now utilizing a more active mechanism to retain the control knob on the control shaft once the controller has been mounted on the appliances control panel. While a snap fit or other locking mechanism could be appropriate to overcome this problem, the serviceability requirements of the controller on a consumer appliance requires that the control knob be removable for service without damage to either the control shaft or the control knob. To accommodate this serviceability requirement, many control shafts are now being designed with flexible cantilevers at the end of the control shaft which have locking barbs on the end thereof which securely engage a recess in the inner diameter of the control knob. As the control knob is slid onto the end of the control shaft, the flexible detents deflect inwardly until the recess on the inner diameter of the control knob is reached at which point the cantilevers are allowed to flex to their normal position with their locking barbs engaging this recess. Once the knob has been inserted on the end of the control shaft, a locking pin is inserted through the control shaft to come to rest between the flexible cantilevers to prevent their deflection inwardly, thus preventing the control knob from being removed from the end of the control shaft without the use of excessive force to a degree resulting in damage of the control knob, control shaft, or both.
One such control shaft is illustrated in U.S. Pat. No. 5,684,281 issued to Amonett on Nov. 4, 1997, for a TIMER CAMSTACK AND CLUTCH. In this design, a shaft locking pin is inserted through the hollow control shaft to be positioned between the two flexible cantilevers to prevent their inward deflection to retain the control knob positioned on the end thereof. The locking pin is held in place by a locking pin groove situated on the end of the locking pin which then engages two ribs on the inner surface of the flexible cantilevers. However, this design suffers from problems which makes its utilization in consumer and commercial appliance applications disadvantageous.
First, because the flexible cantilevers must include a rib on the inner surface to engage the locking pin groove, insertion of the locking pin must necessarily deflect the cantilevers in an outward direction upon insertion of the locking pin. To accommodate such outward deflection until the locking pin groove engages the ribs, the inner diameter of the user control knob must necessarily be slightly larger than would be necessary to accommodate the outer diameter of the cantilevers. This results in some unnecessary play in the fit of the control knob on the control shaft giving the impression of substandard quality. Alternatively, if the inner diameter of the control knob is made to fit more solidly on the end of the control shaft, the insertion of the locking pin will result in damage or at least increased wear on the ribs on the inner surface of the cantilevers, as well as on the end of the locking pin itself. Such wear will ultimately result in failure of the ribs and an inability to lock the control knob in place.
A second significant problem exists with this design related to the securing of the locking pin within the cantilevers of the control shaft. Specifically, since the insertion of the locking pin between the cantilevers having the rib on the inner surface thereof
Joyce Ronald S.
Pearson James E.
Tuma Paul H.
Leydig , Voit & Mayer, Ltd.
Ranco Incorporated of Delaware
Scott J. R.
LandOfFree
Self locking knob attachment shaft for program timers does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Self locking knob attachment shaft for program timers, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Self locking knob attachment shaft for program timers will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2458929