Launch fiber termination

Optical waveguides – With disengagable mechanical connector – Optical fiber/optical fiber cable termination structure

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06282349

ABSTRACT:

BACKGROUND
High energy launch fiber terminations are widely used for laser surgical applications. Some of the fibers incorporate a taper; and some are straight fiber at the launch termination. These terminations are used, by way of example, in surgical lithotripsy. Typically, in such surgical fiber applications, the fibers, whether they incorporate a taper or are straight, are stripped of the buffer (polymer coating) and are fused with a quartz ferrule at the terminus. The terminus itself may be either mechanically or laser polished, and may incorporate an integral lens.
In conjunction with surgical endoscopes, it is necessary for the OD (outside diameter) of the fiber to be small so that it can easily pass through small working channels capable of use deep in the kidney. Typically, 200 &mgr;m silica core, 220 &mgr;m silica clad, 240 &mgr;m polyimide buffer fiber has been employed. Since the cladding is a mere 10 &mgr;m thick, its use at wavelengths longer than 2 &mgr;m is questionable. A general “rule of thumb” for fiber is a cladding thickness which is five times the maximum wavelength of the light through the fiber. This rule is most important in applications where the fiber is highly stressed, that is bent at tight radii. In addition, the process of applying polyimide (solvent casting) causes the polyimide to be tight on the fiber. It basically shrinks into place in the final stages of its “cure”. This shrinkage of the polyimide buffer also imparts stress to the relatively thin cladding. As a consequence, the rule mentioned above for cladding thickness is even more critical. It has been found that fibers of this type often burn up in surgery, sometimes damaging the endoscope.
The output or distal tip for endoscope fibers is prepared by cleaving or polishing (for larger core fibers). The first time, it is done in the factory or by the supplier; and then in each re-use the surgeon or nurse in the operating room cleaves the fiber. When polyimide buffer fiber is cleaved, the polyimide is stretched and a little flap of the polymer frequently remains extended beyond the end of the glass. This flap then is ignited on the first laser pulse, causing it to shrink back to the fiber face. Each subsequent pulse binds the residual carbon more tightly to the glass. The tip glows red; and the output is distorted. Finally, polyimide buffered fiber is prone to damage because of the relatively thin (typically 10 &mgr;m thick) polymer coating. As a result, the fibers commonly break long before their usefulness is exhausted.
The focal spots of lasers used in medicine tend to be somewhat sloppy, as a result of poor maintenance, design of the launch, and laser modal instability. This causes the beam often to be presented larger than that which is specified by the manufacturer.
Where fiber terminations are glued to secure them in the ferrule, deposits of the outgassing adhesive (when heated by overfill energy) tend to contaminate the laser output lens. In some cases, the fiber termination explosively fails, firing shards of glass at the lens (or in some cases, window), destroying it. While this problem of outgassing adhesive, when it is struck by stray laser energy, is not particularly significant at low energy levels, the increased energy levels which continue to be applied in laser surgery greatly exacerbate the problem. Where a metallic beam block for dissipating stray laser energy is employed, the beam block typically is adhered to the end of the quartz ferrule with adhesive, which is subject to the same possibility of failure if that adhesive is contacted with sufficient laser energy.
In an effort to avoid the outgassing problems noted above for glued fiber terminations, another approach involves removing the polymer at the fiber tip and using some mechanism to prevent the adhesive (commonly, epoxy) from wicking all of the way to the front of the ferrule. This has been accomplished by using high viscosity adhesives, pre-heating the ferrules so the adhesive cures at a narrow bore before it can wick, or using a temporary adhesive to take up the space where the desired adhesive is not wanted. When a temporary adhesive is used, the desired adhesive is cured; and the temporary adhesive then is removed. All of these techniques are time consuming and produce low yield. They also do not work for PCS (plastic clad silica) fiber in that the polymer coating for PCS fiber also is cladding and must remain.
Another approach to remove adhesive from the immediate area of the fiber core at the laser focus involves countersinking of the ferrule at the fiber tip; so that the adhesive for securing the fiber to the ferrule is located a pre-established distance from the fiber tip. Countersinking also requires considerable labor and produces a low yield. In addition, it is not possible to countersink very far in most standard connectors, thereby requiring custom connectors. At the same time, it is still possible to have polymer at the fiber face, depending upon the manufacturer of the fiber.
Yet another attempt for eliminating the outgassing problem is to use a specifically modified connector tip to allow a circumferential crimp directly onto the fiber coating at the tip. To accomplish this it is necessary for the fiber to have polymer up to the fiber face, since crimping directly on glass is difficult and produces very low yields. The lowered mass of the connector (metal) at the fiber tip also can result in vaporization of the metal itself, which is even worse than polymer vapor. In addition, most surgical laser interlocks do not recognize the altered outside diameter of the connector which is required for the crimp.
It is desirable to provide a robust, small diameter fiber termination which overcomes the disadvantages of the prior art noted above, which is capable of handling high power inputs, which may undergo flash autoclave sterilization, and which does not employ adhesives in any area where stray energy can contact such adhesives.
SUMMARY OF THE INVENTION
It is an object of this invention to provide an improved launch fiber termination for fiber applications.
It is another object of this invention to provide an improved launch fiber termination for laser surgical applications.
It is an additional object of this invention to provide a launch fiber termination in which the fiber is terminated in a quartz or silica ferrule.
It is a further object of this invention to provide an improved launch fiber termination in which an optical fiber is terminated in a quartz ferrule by fusing a portion of the end of the fiber to the ferrule, without an adhesive interconnection.
A more specific object of this invention includes a beam block which is crimped onto the outer polymer buffer of a fiber used in a launch fiber termination to secure the fiber within a connector and to provide strain relief without the use of adhesives between the beam block and the fiber.
In accordance with a preferred embodiment of this invention, an optical fiber, including cladding, a polymer buffer, and/or polymer jacket, is used in a launch fiber termination by inserting the fiber into a quartz ferrule. The polymer is removed from the end of the fiber which is to be fused. This end is inserted into the ferrule; and the fiber and the ferrule are fused together to form a unitary termination without using adhesive.
In a more specific embodiment of the invention, the quartz ferrule is inserted into a cylindrical beam block having an extension over the polymer-clad buffer portion of the fiber extending outside the ferrule. The extension is crimped onto the polymer buffer to provide strain relief to the assembly. The crimp beam block offers a means of securing the assembly within a connector without exposing adhesive to laser light.


REFERENCES:
patent: 3853526 (1974-12-01), Hochart
patent: 4183619 (1980-01-01), Makuch
patent: 4312571 (1982-01-01), Ganzhorn
patent: 5291570 (1994-03-01), Filgas et al.
patent: 5574820 (1996-11-01), Griscom
patent: 5598496 (1997-01-01), Anderson et al.
patent: 5886265 (1999-03-01), Chatrefou

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Launch fiber termination does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Launch fiber termination, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Launch fiber termination will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2458144

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.