Method of controlling an engine with a pseudo throttle...

Internal-combustion engines – Charge forming device – Including exhaust gas condition responsive means

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C123S361000, C123S399000

Reexamination Certificate

active

06250292

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention is generally related to a method for controlling an engine and, more particularly, to a method for controlling an engine in which a pseudo throttle position sensor value is determined and used when an actual throttle position sensor signal is not readily available to an engine controller.
2. Description of the Prior Art
Many different types of engine control systems are well known to those skilled in the art. Many engine control methods use a sensor, such as a throttle position sensor, which provides a signal that is representative of the actual angular position of a throttle plate within an air intake manifold. The signal from the throttle position sensor is used by control algorithms as a means to determine the magnitude of air flow into the cylinders of the engine.
U.S. Pat. No. 5,967,861, which issued to Ozawa et al on Oct. 19, 1999, describes a throttle position sensor mounting arrangement for a personal watercraft engine. The throttle valve is positioned within an intake pipe of an intake system of an engine which is positioned in an engine compartment defined by a hull of a watercraft. An output shaft of the engine is arranged to drive a water propulsion device of the watercraft. The intake pipe extends from the engine and is arranged to route air to a combustion chamber of the engine. The throttle position sensor is mounted so as to be shielded by the intake pipe from a source of water within the engine compartment, such as an outlet of an intake duct leading through the hull of the watercraft. U.S. Pat. No. 5,906,524, which issued to Ozawa et al on May 25, 1999, describes a throttle position sensor mounting arrangement for a personal watercraft engine. The throttle valve is positioned within an intake pipe of an intake system of an engine which is positioned in an engine compartment defined by the hull of a watercraft. An output shaft of the engine is arranged to drive a water propulsion device of the watercraft. The intake pipe extends from the engine and is arranged to route air through a combustion chamber of the engine. The throttle position sensor is mounted so as to be shielded by the intake pipe from heat generated by the engine and radiated therefrom and from an exhaust system associated therewith.
U.S. Pat. No. 5,273,016, which issued to Gillespie et al on Dec. 28, 1993, describes a throttle lever position sensor for a two-stroke fuel injected engine. The marine propulsion device comprises a propulsion unit which is adapted to be mounted on a boat and includes a propeller shaft and an internal combustion engine drivingly connected to the propeller shaft. The engine includes an engine block structure having a combustion chamber and defining an air intake passage communicable with the combustion chamber, a throttle plate movably supported by the engine block structure and located in the air intake passage, structure for moving the throttle plate in response to movement of an operator control member, and structure supported by the engine block structure for providing a signal indicating the position of the control member independent of the position of the throttle plate.
U.S. Pat. No. 4,646,696, which issued to Dogadko on Mar. 3, 1987, describes a programmed electronic advance for engines. The spark plug ignition advance control for a multiple cylinder internal combustion engine has a spark ignition circuit associated with each cylinder. The circuit includes a SCR trigger operative to cause the ignition spark. A pulse generator is associated with each cylinder and puts out a control pulse to a latch gate outputting to the ignition circuit. The gate responds to a control pulse to latch in an enabled state. A frequency multiplier receives control pulses from the pulse generator and provides 360 reference pulses for each revolution of the engine. A counter responds to the control pulse to count said reference pulses. A ROM storing ignition timing data corresponding to a throttle position is provided. A throttle position sensor provides a control voltage which is applied to an A/D converter which outputs an address in the ROM and the ROM puts out the number of degrees by which the base throttle advance is to be modified and sets the counter to count said reference pulses to said number. The counter subtracts the counts from the basic advance and outputs a control signal when the correct advance is reached. The firing pulse is applied to the latch gate which causes the SCR trigger to operate. The firing pulse also resets the system to start again for the next cylinder.
U.S. Pat. No. 5,943,996, which issued to Sogawa et al on Aug. 31, 1999, describes a direct injection system for engines. A number of embodiments of direct injected V-type outboard motors is described. In each embodiment, a high pressure pump is driven off of the upper end of the crankshaft and is disposed at a high level in the protective cowling. The drive for the high pressure pump is disposed in the path of air flow from an opening in the protective cowling to the engine induction system. On the other hand, the high pressure pump is out of this air flow to avoid corrosion. Various alternative locations for the components of the engine including specifically the high pressure pump, an alternator, a fuel vapor separator, an ECU control unit, and a fuel injector solenoid driver are disclosed.
U.S. Pat. No. 5,941,743, which issued to Kato on Aug. 24, 1999, describes an engine control system. The engine control for an internal combustion engine powering a water propulsion device of an outboard propelling a watercraft is disclosed. The engine control changes one or more combustion condition parameters of the engine based upon changes in one or more operating conditions of the motor or watercraft which affect the exhaust back pressure of the exhaust in the exhaust system of the engine. The operating conditions may include the motor trim angle, watercraft speed, watercraft posture, transmission position, and engine mount height. The engine control changes a combustion condition parameter such as the air/fuel ration, spark ignition timing, or fuel injection timing to optimize the engine operating performance based upon the detected operating parameter.
U.S. Pat. No.5,868,118, which issued to Yoshioka on Feb. 9, 1999, describes a fuel injection control device for outboard motors for low speed operation. A fuel injection control device for outboard motors optimizes the air-fuel ratio when trim is applied to the outboard motor, especially those with two cycle engines. In such an outboard motor, engine, speed, throttle setting, engine boost pressure, engine temperature, intake air temperature, and/or other variables are detected and a basic fuel injection volume determined. Fuel is supplied to each of the engine's cylinders according to the detected values. A trim angle detecting means is used to indicate trim angle. During low speed operation, the trim angle is detected, and the magnitude of a change in the trim angle is calculated. The magnitude of the change in the trim angle is sued to estimate the residual fuel volume within the engine. The estimated value is used to apply correction to the basic fuel injection volume following the change in trim angle. As a result, during low speed operation, an optimal air-fuel ratio can be obtained when the trim of the outboard device is changed.
U.S. Pat. No. 5,862,794, which issued to Yoshioka on Jan. 26, 1999, describes a fuel injection control device for outboard motors. In an outboard motor having a fuel injected two cycle engine, engine speed, throttle setting, engine temperature and/or other variables are detected and a basic fuel injection volume determined. Fuel is supplied to each of the engine's cylinders according to the detected values. When the engine is operating at a high speed, trim angle and vessel speed are detected. The trim angle and vessel speed are used to correct the basic fuel injection volume determined before high speed operation of the engine is detected.
U.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method of controlling an engine with a pseudo throttle... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method of controlling an engine with a pseudo throttle..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of controlling an engine with a pseudo throttle... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2456611

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.