Hepatic progenitors and method of isolating same

Chemistry: molecular biology and microbiology – Animal cell – per se ; composition thereof; process of...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S378000, C435S379000, C435S380000, C435S381000

Reexamination Certificate

active

06242252

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to methods for isolating hepatoblasts and to said isolated hepatoblasts. The isolated hepatoblasts of the invention comprise liver stem cells (pluripotent precursors) and committed progenitors (precursors with only one fate) for either hepatocytes or bile duct cells. The isolated hepatoblasts of the invention may be used to treat liver dysfunction and for artificial livers, gene therapy, drug testing and vaccine production. In addition, the isolated hepatoblasts of the invention may be used for research, therapeutic and commercial purposes which require the use of populations of functional liver cells.
Unlike mature liver cells, the hepatoblasts of the invention generate daughter cells that can mature through the liver lineage and offer the entire range of liver functions, many of which are lineage-position specific. Further, the hepatoblasts of the invention have a greater capacity for proliferation and long-term viability than do mature liver cells. As a result, the hepatoblasts of the invention are better for research, therapeutic and commercial uses than mature liver cells.
BACKGROUND OF THE INVENTION
Stem cells and early progenitors have long been known to exist in rapidly proliferating adult tissues such as bone marrow, gut and epidermis, but have only recently been thought to exist in quiescent tissues such as adult liver, an organ characterized by a long cellular life span. The ability of stem cells to self-replicate and produce daughter cells with multiple fates distinguishes them from committed progenitors. In contrast, committed progenitors produce daughter cells with only one fate in terms of cell type, and these cells undergo a gradual maturation process wherein differentiated functions appear in a lineage-position-dependent process.
In adult organisms, stem cells in somatic tissues produce a lineage of daughter cells that undergo a unidirectional, terminal differentiation process. In all well-characterized lineage systems, such as hemopoiesis, gut and epidermis, stem cells have been identified by empirical assays in which the stem cells were shown to be capable of producing the full range of descendants. To date, no molecular markers are known which uniquely identify stem cells as a general class of cells, and no molecular mechanisms are known which result in the conversion of cells from self-replication and pluripotency to a commitment to differentiation and a single fate.
The structural and functional units of the hepatic parenchyma is the acinus, which is organized like a wheel around two distinct vascular beds. Six sets of portal triads, each with a portal venule, a hepatic arteriole and a bile duct, form the periphery, and the central vein forms the hub. The parenchyma, which comprises the “spokes” of the wheel, consists of plates of cells lined on both sides by the fenestrated sinusoidal endothelium. Blood flows from the portal venules and hepatic arterioles at the portal triads, through sinusoids which align plates of parenchyma, to the terminal hepatic venules, the central vein. Hepatocytes display marked morphologic, biochemical and functional heterogeneity based on their acinar location (see Gebhardt,
Pharmac. Ther.,
Vol. 53, pp. 275-354 (1990)).
Comparatively, periportal parenchymal cells are small in size, midacinar cells are intermediate in size and pericentral cells are largest in size. There are acinar-position-dependent variations in the morphology of mitochondria, endoplasmic reticulum and glycogen granules. Of critical importance is that the diploid parenchymal cells and those with greatest growth potential are located periportally. In parallel, tissue-specific gene expression is acinar-position-dependent leading to the hypothesis that the expression of genes is maturation-dependent (see Sigal et al.,
Amer. J. Physiol.,
Vol. 263, pp. G139-G148 (1993)).
It is currently believed that the liver is a stem cell and lineage system which has several parallels to the gut, skin and hemopoietic systems (see Sigal et al.,
Amer. J. Physiol.,
Vol. 263, pp. G139-G148 (1993); Sigal et al.
In Extracellular Matrix,
Zern and Reed, eds, Marcel Dekker, NY., pp. 507-537 (1993); and Brill et al.,
Liver Biology and Pathobiology,
Arias et al., 3d eds, Raven Press, NY (1994 in press)). As such, it is expected that there are progenitor cell populations in the livers of all or most ages of animals. A lineage model of the liver would clarify why researches have been unable to grow adult, mature liver cells in culture for more than a few rounds of division, have observed only a few divisions of mature, adult liver cells when injected in vivo into liver or into ectopic sites, and have had limited success in establishing artificial livers with adult liver cells. These impasses are of considerable concern in the use of isolated liver cells for liver transplantation, artificial livers, gene therapy and other therapeutic and commercial uses.
The success of the above-listed procedures requires the use of hepatic progenitor cells (hepatoblasts) which are found in a high proportion of liver cells in early embryonic livers and in small numbers located periportally in adult livers. Because it is desirable to isolate such hepatoblasts, a need has arisen to develop a method of successfully isolating said hepatoblasts. The inventors have identified markers and developed a method for isolating hepatoblasts from the livers of animals at any age. The methods of the invention have been developed using embryonic and neonatal livers from rats, however, the method of the invention offers a systematic approach to isolating hepatoblasts from any age from any species.
The methods of the invention have been developed with embryonic livers in which there are significant numbers of pluripotent liver cells (liver stem cells) and committed progenitors (cells with a single fate to become either hepatocytes or bile duct cells). The onset of differentiation of rat parenchymal cells of the liver occurs by the tenth day of gestation. By this stage, parenchymal cells (epithelial or epitheloid cells) are morphologically homogeneous and consist of small cells with scant cytoplasm and, therefore, high nuclear to cytoplasmic ratios, with undifferentiated, pale, nuclei and a few intercellular adhesions. Most liver parenchymal cells at this stage are considered to be bipotent for bile duct cells and hepatocytes. Although they express, usually weakly, some liver-specific functions known to be activated very early in development, such as albumin and &agr;-fetoprotein (AFP), they do not express adult-specific markers such as glycogen, urea-cycle enzymes or major urinary protein (MUP). Only a few islands of fetal cells are positive for BDS
7
, a bile duct cell-specific marker, and none are positive for HES
6
, a hepatocyte-specific marker (see Germain et al.,
Cancer Research,
Vol. 48, pp. 4909-4918 (1988)). The hepatoblasts with scant cytoplasm and often ovoid-shaped nuclei comprise several cell populations including pluripotent liver stem cells and committed progenitors, each having only one fate for either bile duct cells or hepatocytes.
By the fifteenth day of gestation, hepatoblasts increasingly are comprised of the committed progenitors that differentiate along either the bile duct or the hepatocytic lineage. Their maturation is denoted by changes in morphology (increasing size, increasing numbers of cytoplasmic organelles and vacuoles, heterogeneous nuclear morphologies and an increase in pigmented granules), which can be distinguished readily by flow cytometric parameters. “Forward scatter” measures cell size. “Side scatter” measures cellular complexity or granularity, which is affected by the numbers of cellular organelles. Autofluorescence is dependent upon lipofuscins and other pigments that increase with maturation.
Accompanying the morphological changes are step-wise or sequential changes in expression of types of cytokeratins, various surface antigens and tissue-specific genes. Whereas the early hepatoblasts which include liver stem cells intense

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Hepatic progenitors and method of isolating same does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Hepatic progenitors and method of isolating same, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Hepatic progenitors and method of isolating same will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2456162

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.