Method of molding a reinforced article

Plastic and nonmetallic article shaping or treating: processes – With measuring – testing – or inspecting

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C264S104000, C264S105000, C264S108000, C264S328120

Reexamination Certificate

active

06214263

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates generally to an improved method of molding a reinforced article from composite material. More specifically, the present invention relates to a method of molding a thermally and/or electrically conductive article that is easily moldable while yielding conductivities many times greater than prior art molding methods even employing known materials. Also, the present invention provides for a method of molding a structurally improved reinforced article from a composite material. It should understood that the term “reinforced article” refers to an article that is loaded with any type of filler material, be it electrically or thermally conductive or of high strength. Therefore, the method of the present invention relates to electrically conductive compositions, thermally conductive compositions and structurally reinforced compositions.
In the electronics industry, it has been well known to employ metallic materials for thermal and electrical conductivity applications, such as heat dissipation for cooling semiconductor device packages, grounding applications, and the like. For these applications, such as heat sinks, the metallic material typically is tooled or machined from bulk metals into the desired configuration. However, such metallic conductive articles are typically very heavy, costly to machine and are susceptible to corrosion. Further, the geometries of machined metallic heat dissipating articles are very limited to the inherent limitations associated with the machining or tooling process. As a result, the requirement of use of metallic materials which are machined into the desired form, place severe limitations on component design particular when it is known that certain geometries, simply by virtue of their design, would realize better thermal efficiency, for example, but are not attainable due to the limitations in machining metallic articles.
It is widely known in the prior art that improving the overall geometry of a heat dissipating article, can greatly enhance the overall performance of the article even if the material is the same. Therefore, the need for improved heat sink geometries and lower cost necessitated an alternative to the machining of bulk metallic materials. To meet this need, attempts have been made in the prior art to provide molded compositions that include conductive filler material therein to provide the necessary thermal conductivity. The ability to mold a conductive composite enabled the design of more complex part geometries to realize improved performance of the part. Similarly, the electrical conductivity of a given article may also be greatly improved if it capable of being molding. For example, the shapes and configurations could be greatly improved by molding the article to realize improved electrical conductivity. In addition, a moldable composite with high structural integrity with high-strength filler material therein is also known.
The attempts in the prior art included the employment of a polymer base matrix loaded with a granular material, such as boron nitride grains. Also, attempts have been made to provide a polymer base matrix loaded with flake-like filler material. These attempts are, indeed, moldable into complex geometries but still do not approach the desired performance levels found in metallic machined parts. It is a known in the art that filler material, particularly high aspect ratio filler material, will align parallel with the flow path of the base matrix within a mold. Therefore, these conductive composite materials must be molded with extreme precision due to concerns of filler alignment during the molding process. This is of concern when the filler material is non-symmetrical or when there is an aspect ratio greater than 1:1 of the thickness to the length of the filler. Even with precision molding and design, inherent problems of fluid turbulence, collisions with the mold due to complex product geometries make it impossible to position the non-symmetrical filler ideally thus causing the composition to perform far less than desirable. This problem is exacerbated when the filler has an aspect ratio greater than 10:1. This is a serious concern because filler is commonly employed that has an aspect ratio up to 40:1.
Moreover, the entire matrix of the composition must be satisfactory because heat transfer is a bulk property rather than a direct path property such as the transfer of electricity. A direct path is needed to conduct electricity. However, heat is transferred in bulk where the entire volume of the body is employed for the transfer. Therefore, even if a highly conductive narrow conduit is provided through a much lower conductive body, the heat transfer would not be as good as a body which is consistently marginally conductive throughout the entire body. Therefore, consistency of the thermal conductivity of the entire matrix of the composite body is essential for overall high thermal conductivity. Moreover, the proper alignment of the loaded filler material, particularly high aspect ratio filler, within the polymer base is of critical importance. When the composite is employed for electrical conductivity, the arrangement of filler therein is also of critical importance in that an excessive number of discontinuities in the filler will result in poor electrical transmission.
In view of the foregoing, there is a demand for an improved method of molding reinforced articles of composite material which are thermally and/or electrically conductive. There is also a demand for articles of composite material to be formed containing or reinforced with high strength filler material for higher structural integrity. In addition, there is a demand for a method of molding that can fully exploit the employment of composite polymer and filler material; namely, the proper alignment and positioning of filler material with the base polymer matrix. There is also a demand for such a method to enable such polymer and high aspect ratio filler compositions to be easily molded into complex product geometries. There is also a demand for such a method of molding to form an article that exhibits thermal and electrical conductivity as close as possible to purely metallic conductive materials while being relatively low in cost to manufacture.
SUMMARY OF THE INVENTION
The present invention preserves the advantages of prior art methods for molding reinforced articles from conductive plastic compositions. In addition, it provides new advantages not found in currently known methods and overcomes many disadvantages of such currently available methods.
The invention is generally directed to the novel and unique method of molding a thermally conductive article from thermally conductive plastic composite material that has particular application in heat sink applications and particularly where heat must be moved from one region to another to avoid device failure. In addition, the method of the present invention can provide articles that have particular application in the electronics industry as it can provide a moldable member that is electrically conductive. The method of the present invention enables a composite material of polymer material and conductive filler, such as a high aspect ratio filler, to molded in the most conductive efficient manner while still maintaining low manufacturing costs. By selection of the materials according to the application at hand, high thermal and/or electrical conductivity may be achieved. In that connection, the selection of a high strength material as the filler, can achieve a molded reinforced article of high structural integrity while still be moldable, such as by injection molding.
A method of molding, such as by injection molding, a thermally, electrically conductive and/or structurally reinforced article is provided. If an electrically conductive filler is employed, an article with electrical properties, such as electrical conductivity or EMI shielding, for example, can be achieved. If a thermally conductive filler material is employed, a thermally conductiv

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method of molding a reinforced article does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method of molding a reinforced article, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of molding a reinforced article will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2452489

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.