Flow monitoring device for medical application

Surgery – Means for introducing or removing material from body for... – Treating material introduced into or removed from body...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C604S065000, C128SDIG001

Reexamination Certificate

active

06290681

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to intravenous (IV) fluid delivery systems and in particular to a monitoring device for providing information on when and if the delivery of an IV fluid to a patient actually occurred.
BACKGROUND OF THE INVENTION
The rapid rise of health care costs has become an important issue in modern society. To help reduce the costs, professional care givers have begun to seek alternatives, one of which is home health care services. These services not only tend to reduce costs, but are also preferred by the patient wishing to remain in his familiar environment. Among the many types of services provided are: respiratory care, rehabilitation therapy, cardiac monitoring procedures, and infusion therapy.
Infusion therapy involves IV administration of drugs. Making this therapy safe and convenient for a home situation allows a great number of patients who would otherwise be hospitalized to remain at home and still receive medication. Currently, over 300,000 patients annually use a home infusion therapy delivery system. Typically, patients include the elderly with chronic diseases like cancer, patients with either Crohns disease, HIV or other immune system disorders, and patients suffering from chronic pain. Many of these patients require infusion treatment over a long duration such as months or even years.
One characteristic of home IV drug therapy, in contrast to hospital administered therapy, is that a nurse is not always present or readily available. To provide safe and effective treatment, home infusion therapy usually requires that the patient himself, or other non-professional caregiver, such as a relative, administer IV fluids. Special training is required because many home care patients on IV therapy require multiple drugs or multiple doses of the same drug each day. The average nursing visit to a home infusion therapy patient is typically about 90 minutes including commuting time. The typical patient gets between 1 and 4 nursing visits per week, but has to take IV medications daily. Since the cost of daily care by a nurse is not usually covered by most insurers, the cost of attention by a nurse is most economically applied in training the patent or other amateur caregiver and in monitoring the therapy program.
In the home care situation non-compliance, over-medication or under-compliance with the IV therapy protocol is a serious issue and quite prevalent. For instance, non-compliance (not taking a medication) or under-compliance (taking fewer or smaller dosages than prescribed) occurs in up to approximately one-third to one-half of elderly home therapy patients. Typical compliance related problems include forgetting to follow the specified procedure for administration of the IV medication, forgetting to turn on the various devices used to administer the IV medication and forgetting to turn off a medical device which then delivers too much medication (over-medication). Reasons for compliance related problems are varied and include poor communication, confusion or forgetfulness regarding the procedures and/or equipment, or even attempts to avoid the adverse side effects of IV medications and fluids. Misapplication of the home IV therapy protocol can have serious ramifications resulting in greatly increased home health care nursing expenses, re-hospitalization, and reduction in health status of the patient. Thus, there is a strong need for improved monitoring of patient compliance with the health care program. Benefits of such improved monitoring and compliance include, but are not limited to, improved health at a lower cost, while still remaining in the preferred home environment.
To properly monitor compliance with an IV therapy protocol, a device may be provided for monitoring the flow of IV medications and fluids. The IV fluids for a single patient are likely to come from several different sources or systems including IV pumps, IV fluid controllers, gravity drips, syringes, and other devices.
A typical gravity powered IV may be as simple as an IV bag hanging on a pole in which a nurse or care giver manually adjusts a valve to limit the flow rate, but not control it accurately, or it may use an electronic controller which optically counts the drops of fluid as they pass an optical sensor and then adjusts the flow rate accordingly. However, optical drop counting sensors only provides an indication that the fluid is flowing past the sensor when in a vertical orientation such as hanging from an IV pole. Thus the patient and IV delivery equipment must remain relatively stationary during the administration of the medication or fluid. Optical drop counters also function poorly at higher flow rates and higher line pressures, such as when a syringe is used, because the fluid moving past the drop counter tends to become a continuous stream rather than remaining discrete drops. Therefore, the optical drop counter technique cannot be adapted for use with all fluid sources.
An alternative to an optical drop counting sensor, or as a stand-alone measuring device, is a single point pressure transducer to measure the fluid pressure in the IV tubing at a selected point of measurement. This type of sensor is common in IV pumps and is used to indicate that the pump is generating a static pressure head and, correspondingly, causing fluid flow or backpressure in the event of an occlusion in the IV line. This type of sensor only determines line pressure at the selected point, and is only useful in monitoring the pressure caused by the IV pumping device and the related backpressure caused by moving fluids into the patient's body. However, this type of single-point pressure sensor is useful in many IV delivery systems to determine if fluid pressures are at correct levels, and to detect changes in fluid pressure which are indicative of an occluded or collapsed vein. Often, when a certain threshold pressure is detected in a device using this type of sensor, an alarm is sounded to warn of a flow problem. This type of device measures changes in the static line pressure of a fluid line, but is unable to determine if a patient is following proper IV drug administration procedures and cannot differentiate between changes in pressure due to fluid flow versus some other cause, such as an occlusion in which there is actually no fluid flow.
Increased backpressure in an IV fluid line causes problems, and, as described above, many IV fluid delivery systems use a sensor to determine when high backpressure develops, i.e., greater than a few inches of water, for instance when an infiltration of tissue occurs or the tubing becomes occluded. Upon the detection of a significant backpressure, the device sounds an alarm and may function to automatically discontinue the delivery of the IV medication and fluids. Therefore, it is important that any device used to monitor whether or not fluid is flowing does not cause a substantial increase in backpressure or a false occlusion alarm might be triggered.
Other alternatives use indirect methods to monitor the flow of IV fluids. For instance, the speed and number of rotations in a pump mechanism may be monitored to indirectly determine when fluid flow is occuring. This is useful for flows caused by an IV pump, but is of no value to patients who also receive gravity drips or fluids via syringe. Since nearly all infusion therapy patients must perform venous access device maintenance procedures, such as a heparin flush via syringe to maintain the patency of their IV lines, this pump rotation technique is not of value for monitoring all infusions.
The time usage for an IV delivery system may be recorded to prepare bills to patients. Typically, the information is printed or stored in an electronic memory device such as the electronic controls for the drop counter or IV pump. The information may be used to determine which of several patients are using the IV system being monitored, it may be used to coordinate several IV delivery systems with a centrally managed pump, or it may be used to facilitate billing and reimbursement. Unfortunately,

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Flow monitoring device for medical application does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Flow monitoring device for medical application, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Flow monitoring device for medical application will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2451162

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.