Transmembrane serine protease overexpressed in ovarian...

Organic compounds -- part of the class 532-570 series – Organic compounds – Carbohydrates or derivatives

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C536S023100, C536S023500, C536S024500, C435S069100, C435S069300, C435S320100, C424S277100

Reexamination Certificate

active

06294663

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to the fields of cellular biology and diagnosis of neoplastic disease. More specifically, the present invention relates to a transmembrane serine protease termed Tumor Associated Differentially-Expressed Gene-12 (TADG-12), which is overexpressed in ovarian carcinoma.
2. Description of the Related Art
Tumor cells rely on the expression of a concert of proteases to be released from their primary sites and move to distant sites to inflict lethality. This metastatic nature is the result of an aberrant expression pattern of proteases by tumor cells and also by stromal cells surrounding the tumors [1-3]. For most tumors to become metastatic, they must degrade their surrounding extracellular matrix components, degrade basement membranes to gain access to the bloodstream or lymph system, and repeat this process in reverse fashion to settle in a secondary host site [3-6]. All of these processes rely upon what now appears to be a synchronized protease cascade. In addition, tumor cells use the power of proteases to activate growth and angiogenic factors that allow the tumor to grow progressively [1]. Therefore, much research has been aimed at the identification of tumor-associated proteases and the inhibition of these enzymes for therapeutic means. More importantly, the secreted nature and/or high level expression of many of these proteases allows for their detection at aberrant levels in patient serum, e.g. the prostate-specific antigen (PSA), which allows for early diagnosis of prostate cancer [7].
Proteases have been associated directly with tumor growth, shedding of tumor cells and invasion of target organs. Individual classes of proteases are involved in, but not limited to (1) the digestion of stroma surrounding the initial tumor area, (2) the digestion of the cellular adhesion molecules to allow dissociation of tumor cells; and (3) the invasion of the basement membrane for metastatic growth and the activation of both tumor growth factors and angiogenic factors.
For many forms of cancer, diagnosis and treatment has improved dramatically in the last 10 years. However, the five year survival rate for ovarian cancer remains below 50% due in large part to the vague symptoms which allow for progression of the disease to an advanced stage prior to diagnosis [8]. Although the exploitation of the CA125 antigen has been useful as a marker for monitoring recurrence of ovarian cancer, it has not proven to be an ideal marker for early diagnosis. Therefore, new markers that may be secreted or released from cells and which are highly expressed by ovarian tumors could provide a useful tool for the early diagnosis and for therapeutic intervention in patients with ovarian carcinoma.
The prior art is deficient in the lack of the complete identification of the proteases overexpressed in carcinoma, therefore, deficient in the lack of a tumor marker useful as an indicator of early disease, particularly for ovarian cancers. Specifically, TADG-12, a transmembrane serine protease, has not been previously identified in either nucleic acid or protein form. The present invention fulfills this long-standing need and desire in the art.
SUMMARY OF THE INVENTION
The present invention discloses TADG-12, a new member of the Tumor Associated Differentially-Expressed Gene (TADG) family, and a variant splicing form of TADG-12 (TADG-12V) that could lead to a truncated protein product. TADG-12 is a transmembrane serine protease overexpressed in ovarian carcinoma. The entire cDNA of TADG-12 has been identified (SEQ ID No. 1). This sequence encodes a putative protein of 454 amino acids (SEQ ID No. 2) which includes a potential transmembrane domain, an LDL receptor like domain, a scavenger receptor cysteine rich domain, and a serine protease domain. These features imply that TADG-12 is expressed at the cell surface, and it may be used as a molecular target for therapy or a diagnostic marker.
In one embodiment of the present invention, there is provided a DNA fragment encoding a TADG-12 protein selected from the group consisting of: (a) an isolated DNA fragment which encodes a TADG-12 protein; (b) an isolated DNA fragment which hybridizes to isolated DNA fragment of (a) above and which encodes a TADG-12 protein; and (c) an isolated DNA fragment differing from the isolated DNA fragments of (a) and (b) above in codon sequence due to the degeneracy of the genetic code, and which encodes a TADG-12 protein. Specifically, the DNA fragment has a sequence shown in SEQ ID No. 1 or SEQ ID No. 3.
In another embodiment of the present invention, there is provided a vector/host cell capable of expressing the DNA of the present invention.
In yet another embodiment of the present invention, there is provided an isolated and purified TADG-12 protein encoded by DNA selected from the group consisting of: (a) isolated DNA which encodes a TADG-12 protein; (b) isolated DNA which hybridizes to isolated DNA of (a) above and which encodes a TADG-12 protein; and (c) isolated DNA differing from the isolated DNAs of (a) and (b) above in codon sequence due to the degeneracy of the genetic code, and which encodes a TADG-12 protein. Specifically, the TADG-12 protein has an amino acid sequence shown in SEQ ID No. 2 or SEQ ID No. 4.
In still yet another embodiment of the present invention, there is provided a method for detecting expression of a TADG-12 protein, comprising the steps of: (a) contacting mRNA obtained from the cell with the labeled hybridization probe; and (b) detecting hybridization of the probe with the mRNA.
The present invention further provides methods for diagnosing a cancer or other malignant hyperplasia by detecting the TADG-12 protein or mRNA disclosed herein.
In still another embodiment of the present invention, there is provided a method of inhibiting expression of endogenous TADG-12 mRNA in a cell by introducing a vector into the cell, wherein the vector comprises a DNA fragment of TADG-12 in opposite orientation operably linked to elements necessary for expression.
In still yet another embodiment of the present invention, there is provided a method of inhibiting expression of a TADG-12 protein in a cell by introducing an antibody directed against a TADG-12 protein or fragment thereof.
In still yet another embodiment of the present invention, there is provided a method of targeted therapy by administering a compound having a targeting moiety specific for a TADG-12 protein and a therapeutic moiety. Specifically, the TADG-12 protein has an amino acid sequence shown in SEQ ID No. 2 or SEQ ID No. 4.
The present invention still further provides a method of vaccinating an individual against TADG-12 by inoculating the individual with a TADG-12 protein or fragment thereof. Specifically, the TADG-12 protein has an amino acid sequence shown in SEQ ID No. 2 or SEQ ID No. 4. The TADG-12 fragment includes the truncated form of TADG-12V peptide having a sequence shown in SEQ ID No. 8, and a 9-residue up to 12-residue fragment of TADG-12 protein.
In yet another embodiment of the present invention, there is provided an immunogenic composition, comprising an immunogenic fragment of a TADG-12 protein and an appropriate adjuvant. The TADG-12 fragment includes the truncated form of TADG-12V peptide having a sequence shown in SEQ ID No. 8, and a 9-residue up to 12-residue fragment of TADG-12 protein.
Other and further aspects, features, and advantages of the present invention will be apparent from the following description of the presently preferred embodiments of the invention given for the purpose of disclosure.


REFERENCES:
patent: WO9841656 (1998-09-01), None
Tanimoto et al, “Cloning and expression of TADG-15, a novel serine protease expressed in ovarian cancer”, Proceeding of the American Society for Cancer Research, vol. 39, p. 648, Mar. 1998.*
O'Brien et al, “Cloning and expression of TADG-15, a novel serine protease expressed in ovarian cancers”, Tumor Biology, vol. 19, suppl. 2, p. 33, Aug. 19

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Transmembrane serine protease overexpressed in ovarian... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Transmembrane serine protease overexpressed in ovarian..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Transmembrane serine protease overexpressed in ovarian... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2446334

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.