Protein kinase homologs

Drug – bio-affecting and body treating compositions – Enzyme or coenzyme containing – Transferases

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S194000, C530S350000

Reexamination Certificate

active

06264947

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to nucleic acid and amino acid sequences of protein kinase homologs and to the use of these sequences in the diagnosis, treatment, and prevention of cancer, autoimmune/inflammatory disorders, and reproductive disorders.
BACKGROUND OF THE INVENTION
Kinases and phosphatases are critical components of intracellular signal transduction mechanisms. Kinases catalyze the transfer of high energy phosphate groups from adenosine triphosphate (ATP) to hydroxyamino acids of various target proteins. Phosphatases, in contrast, remove phosphate groups from proteins. Reversible protein phosphorylation is the main strategy for regulating protein activity in eukaryotic cells. In general, proteins are activated by phosphorylation in response to extracellular signals such as hormones, neurotransmitters, and growth and differentiation factors. Protein dephosphorylation occurs when down-regulation of a signaling pathway is required. The combined activities of kinases and phosphatases regulate key cellular processes such as proliferation, differentiation, and cell cycle progression.
Kinases comprise the largest known enzyme superfamily and vary widely in their target profeins. Kinases may be categorized as protein tyrosine kinases (PTKs), which phosphorylate tyrosine residues, and protein serine/threonine kinases (STKs), which phosphorylate serine and/or threonine residues. Some kinases have dual specificity for both serine/threonine and tyrosine residues. Almost all kinases contain a conserved 250-300 amino acid catalytic domain. This domain can be further divided into 11 subdomains. N-terminal subdomains I-IV fold into a two-lobed structure which binds and orients the ATP donor molecule, and subdomain V spans the two lobes. C-terminal subdomains VI-XI bind the protein substrate and transfer the gamma phosphate from ATP to the hydroxyl group of a serine, threonine, or tyrosine residue. Each of the 11 subdomains contains specific catalytic residues or amino acid motifs characteristic of that subdomain. For example, subdomain I contains an 8-amino acid glycine-rich ATP binding consensus motif, subdomain II contains a critical lysine residue required for maximal catalytic activity, and subdomains VI through IX comprise the highly conserved catalytic core. STKs and PTKs also contain distinct sequence motifs in subdomains VI and VIII which may confer hydroxyamino acid specificity. Some STKs and PTKs possess structural characteristics of both families. In addition, kinases may also be classified by additional amino acid sequences, generally between 5 and 100 residues, which either flank or occur within the kinase domain. These additional amino acid sequences regulate kinase activity and determine substrate specificity. (Reviewed in Hardie, G. and Hanks, S. (1995)
The Protein Kinase Facts Book
, Vol I:7-20 Academic Press, San Diego, Calif.)
PTKs may be classified as either transmembrane or non-transmembrane proteins. Transmembrane tyrosine kinases function as receptors for most growth factors. Binding of growth factor to the receptor activates the transfer of a phosphate group from ATP to selected tyrosine residues in the receptor itself and in specific second messenger proteins. Growth factors (GF) that associate with receptor PTKs include epidermal GF, platelet-derived GF, fibroblast GF, hepatocyte GF, insulin and insulin-like GFs, nerve GF, vascular endothelial GF, and macrophage colony stimulating factor.
Non-transmembrane PTKs form signaling complexes with the cytosolic domains of plasma membrane receptors. Receptors that signal through non-transmembrane PTKs include cytokine, hormone, and antigen-specific lymphocytic receptors. Many PTKs were first identified as oncogene products in cancer cells in which PTK activation was no longer subject to normal cellular controls. In fact, about one third of the known oncogenes encode PTKs. Furthermore, cellular transformation (oncogenesis) is often accompanied by increased tyrosine phosphorylation activity. (Carbonneau, H. and Tonks, N. K. (1992) Annu. Rev. Cell Biol. 8:463-93.) Regulation of PTK activity may therefore be an important strategy in controlling some types of cancer.
The discovery of new protein kinase homologs and the polynucleotides encoding them satisfies a need in the art by providing new compositions which are useful in the diagnosis, prevention, and treatment of cancer, autoimmune/inflammatory disorders, and reproductive disorders.
SUMMARY OF THE INVENTION
The invention features substantially purified polypeptides, protein kinase homologs, referred to collectively as “PKH” and individually as “PKH-1”, “PKH-2”, “PKH-3”, “PKH-4”, “PKH-5”, “PKH-6”, “PKH-7”, “PKH-8”, and “PKH-9”. In one aspect, the invention provides a substantially purified polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, (SEQ ID NO: 1-9), and fragments thereof.
The invention further provides a substantially purified variant having at least 90% amino acid identity to at least one of the amino acid sequences selected from the group consisting of SEQ ID NO: 1-9, and fragments thereof. The invention also provides an isolated and purified polynucleotide encoding the polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 1-9, and fragments thereof. The invention also includes an isolated and purified polynucleotide variant having at least 70% polynucleotide sequence identity to the polynucleotide encoding the polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 1-9, and fragments thereof.
Additionally, the invention provides an isolated and purified polynucleotide which hybridizes under stringent conditions to the polynucleotide encoding the polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 1-9, and fragments thereof. The invention also provides an isolated and purified polynucleotide having a sequence which is complementary to the polynucleotide encoding the polypeptide comprising the amino acid sequence selected from the group consisting of SEQ ID NO: 1-9, and fragments thereof.
The invention also provides an isolated and purified polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO: 10, SEQ ID NO: 11, SEQ ID NO: 12, SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 15, SEQ ID NO: 16, SEQ ID NO: 17, SEQ ID NO: 18, (SEQ ID NO: 10-18) and fragments thereof. The invention further provides an isolated and purified polynucleotide variant having at least 70% polynucleotide sequence identity to the polynucleotide sequence selected from the group consisting of SEQ ID NO: 10-18, and fragments thereof. The invention also provides an isolated and purified polynucleotide having a sequence which is complementary to the polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO: 10-18, and fragments thereof.
The invention also provides a method for detecting a polynucleotide in a sample containing nucleic acids, the method comprising the steps of (a) hybridizing the complement of the polynucleotide sequence to at least one of the polynucleotides of the sample, thereby forming a hybridization complex; and (b) detecting the hybridization complex, wherein the presence of the hybridization complex correlates with the presence of a polynucleotide in the sample. In one aspect, the method further comprises amplifying the polynucleotide prior to hybridization.
The invention further provides an expression vector containing at least a fragment of the polynucleotide encoding the polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 1-9, and fragments thereof. In another aspect, the expression vector is contained within a host cell.
The invention also provides a method for producing a polypeptide, the method comprising the steps of: (a) culturing the host cell contai

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Protein kinase homologs does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Protein kinase homologs, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Protein kinase homologs will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2445875

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.