Flow rate measuring system for crops supported on a conveyor

Measuring and testing – Volume or rate of flow – Using rotating member with particular electrical output or...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C073S861740, C033S501040, C198S502200

Reexamination Certificate

active

06237427

ABSTRACT:

BACKGROUND
Mass flow rate meters may be used to measure rate of mass flow of particulate materials within a system. Typically the particulate material is dropped onto an impact sensor or thrown against an impact sensor. The force exerted on the impact sensor is relative to the quantity of particulate material moving through the system. The movement or deflection of the impact sensor is converted by a transducer to a calculated mass flow rate.
These mass flow rate meters measure the force of airborne particulate materials which strike an impact sensor. Many materials are not suitable for dropping or throwing at a sensor. These materials would include harvested fruit and vegetable crops and other perishables.
Harvested fruit and vegetables are typically moved on a conveyor belt or chain. These conveyor systems may use scales to determine the mass flow rate of material moving along the conveyor.
Belt scales are a combination of an endless belt or chain of a conveyor with a weighing machine located under a portion of the endless belt The belt scale is disposed to sense the weight of a portion of the material on the belt that is immediately above the weighing machine. It is well known that there is no simple and direct correlation between true mass flow rate passing on the belt. The difference between maximum and minimum flow rate that can be accommodated with out re-calibration of the scale is very limited. A belt scale tends to be sensitive to changes in the humidity of the air as well as to the degree of moisture, or lack thereof, in the material being weighed. It should also be noted that the cost of a belt scale is high.
Belt scales are also undesirable for use on harvesting equipment. Belt scales are often too fragile to be mounted on the moving frame of harvesting equipment. A belt scale also would be inaccurate if the harvesting machine is operating on side slope. A belt scale also would measure soil which is included with the crops which would render the measurement inaccurate.
For the foregoing reasons there is a need for a flow rate measuring device for use with conveyor systems. There is a particular need for a mass flow rate measuring device which is suitable for use on fragile or perishable materials such as fruit or vegetables that are moving along conveyor equipment. There is also a need for a flow rate measuring device which has the necessary durability for use on conveyor systems of harvesting equipment. There is a need for a flow rate measuring device for use on conveyor systems of harvesting equipment which does not produce an inaccurate measurement if soil is included with the crops. There is also a need for a flow rate measuring device for use on conveyor systems of harvesting equipment which is not effected by the pitch or roll of the equipment when operated on a slope. There is also a need for a flow rate measuring device for use on “lifters” or lifting conveyors of harvesting equipment for sugar beets, potatoes, and other crops. These “lifters” or lifting conveyors lift the harvested crop out of the ground and convey the crop to the main conveyor system of the harvester.
SUMMARY
A flow rate measuring system for conveyed material includes a conveyor including a frame and a material supporting surface moveably supported by the frame. The material supporting surface moves relative to the frame, and material supported on the material supporting surface is substantially stationary relative to the material supporting surface. The flow rate measuring system utilizes height measurement devices which are responsive to the height of the material supported on the material supporting surface of the conveyor for taking material height measurements. A signal generating device provides an output signal in response to the height measurement device. The height of the material on a conveyor of known width and known speed allows the calculation of volume or mass flow rates.
The height measurement device typically comprises a deflection impact surface which is disposed on a finger or paddle assembly. The deflection impact surface depends from a pivot location vertically disposed above the material support surface. The deflection impact surface may also be spring biased about the pivot location. The signal generating means may comprise a transducer for converting a height measurement to an electrical signal. The flow rate measuring system for conveyed material additionally may include a signal processing device such as a computer for taking and recording height measurements as specific intervals. The signal processing device may calculate an instantaneous flow rate of conveyed material relative to the height measurement of material supported on the material supporting surface of the conveyor. The flow rate measuring system for conveyed material may including two or more height measurement devices spaced laterally in relation to the width of the conveyor belt.
There are significant benefits provided by the flow rate measuring system of the present invention.
A first benefit provided by the flow rate measuring system of the present invention is the ability to measure flow rates on a conveyor system. Many materials are moved by conveyor systems. The ability to measure the flow rate of materials moved within a system allows for efficient operation of the material moving process. The flow rate measuring system of the present invention allows for the accurate measurement of material height at one or more locations on the conveyor to be used in flow rate calculations. By using a height measurement, the present invention allows a much simpler flow rate measuring system than existing bulk weight systems. The flow rate measuring system further allows for the accurate flow rate of perishable materials such as fruits and vegetables to be measured while the materials are moving on a conveyor. This allows for the measuring of the materials by a process other than weighing, which is not always possible.
The deflection assembly used in the present invention is disposed above the moving conveyor and is impacted by material traveling on the conveyor. The flow rate measuring system includes means through which the deflection assembly can be adjusted so that perishable materials will not be damaged by the deflection assembly. In this way, the flow rate measuring system may be used on different crops such as fruits and vegetables and will accommodate the particular fragility of each individual crop.
The flow rate measuring system has particular benefits to crop harvesting equipment. Fruit and vegetable harvesting equipment typically use conveyor systems to move harvested crops from the location in the field where the crop is grown to transport machinery which is used to move the harvested crops. Bulk weighing systems used on conveyors are typically too fragile for use on moving machinery. The flow rate measuring system of the present invention has the durability necessary to work while mounted on moving equipment. The flow rate measuring system may be used with conveyors of all type including common belt and chain systems. The flow rate measuring system of the present invention is usable on the conveyor systems of harvesting equipment including the conveyors used in lifters.
The flow rate measuring system is not affected by soil within the flow of crops moved by the conveyor system. Bulk weighing systems would typically measure the entire quantity of all material on the conveyor belt. A correction for the amount of soil included with the crops would be necessary to improve the accuracy of the measurement. In the present system, soil within the flow of crops would not affect the measured height of the crops in relation to the conveyor material supporting surface. If soil clumps are present within the flow of crops, the deflection assembly used for height measurement in the flow rate measuring system could be adjusted so that the fingers of the deflection assembly would not deflect from the impact with soil clumps.
The flow rate measuring system can also incorporate a reverse flow arrangement to acc

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Flow rate measuring system for crops supported on a conveyor does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Flow rate measuring system for crops supported on a conveyor, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Flow rate measuring system for crops supported on a conveyor will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2443786

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.