Image printing apparatus, method of controlling the same,...

Incremental printing of symbolic information – Ink jet – Ejector mechanism

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C347S100000

Reexamination Certificate

active

06234606

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to an image printing apparatus, a method of controlling the same, and a printing apparatus.
2. Description of Related Art
In recent years, color printers capable of printing color images on printing media are popularly used. However, when a monochromatic image of characters or the like is to be printed by a color printer, the printing speed decreases, as will be described later. As a solution to this problem, a color printer which has both a color ink head for printing a color image and a black ink head for printing a binary image and selectively uses them as needed to allow printing both a color image and a monochromatic image on one printing medium has been used.
In the medical field where radiographs or CT/MRI images are used, monochromatic images are still used in many cases. This is because the density resolution of human eyes is high. In the medical field where high density resolution is required, a larger quantity of information can be visually recognized from a monochromatic image than from a color image.
Additionally, as is known, the density resolution of human eyes is higher for a transparent printing medium than for a reflective printing medium. It is generally said that human eyes have density resolution of about 8 bits for a color image and 10 to 11 bits for a monochromatic transmission image.
A radiograph or CT/MRI image is printed on a transparent printing medium and provided as a medical image. A doctor reads the image at the critical density resolution of human eyes, thereby obtaining a diagnostic result. Although images are used in the medical field, ultrasonic diagnosis, nuclear medical apparatuses, endoscopes, retinal cameras, and pathological microscopes often use color images for the purpose of obtaining color vital information or expressing functional vital information such as blood stream states.
Conventionally, printing apparatuses for printing color images and those for printing monochromatic high-gradation images are independently prepared and selectively used. For this reason, a color image and a monochromatic high-gradation image cannot be simultaneously printed on one printing medium. Management of printed images is also cumbersome.
There are also color image printing apparatuses capable of printing monochromatic images. However, they are poorer in gradation expression than printing apparatuses exclusively used to print monochromatic images. In addition, a printing medium for color image printing and that for monochromatic image printing need be selectively used depending on applications.
An example of such an apparatus is a sublimation thermal transfer printer. In this apparatus, three ink ribbons (dyes) of Y, M, and C or R, G, and B are prepared. An ink ribbon overlapping a printing medium is partially heated by a thermal head to transfer the dye of the ink ribbon to the medium, thereby forming an image. When the same process is repeated three times for the respective ink ribbons, a color image can be formed. To print a monochromatic image by this scheme, the three different color inks are uniformly overlaid. In this scheme, however, a monochromatic image is expressed by overlaying three colors, and it is difficult to express a neutral monochrome without any color appearance. In addition, a sufficient monochromatic density (e.g., OD3) cannot be expressed particularly for a transparent medium.
For this reason, when a neutral monochromatic density or sufficiently high monochromatic density is required, a heat-sensitive medium for printing monochromatic images is independently prepared and partially heated by the thermal head. By blackening the heated portion, an image is obtained. That is, a medium for color images is exchanged with the medium for monochromatic images, and the ink ribbons are detached as needed.
As another example, there is an ink-jet printer. In this scheme, three different color inks: Y, M, and C or R, G, and B are prepared and overlaid to express a color image. In this case as well, a monochromatic image can be expressed by uniformly overlaying the three colors. However, a neutral monochrome without any color appearance can hardly be expressed because the three colors are overlaid, as in the sublimation thermal transfer printer. To express a sufficient monochromatic density (e.g., OD3) particularly for a transparent medium, inks must be overlaid on the same pixel. However, the ink absorption amount of a medium is limited, so a sufficient monochromatic density cannot be expressed. More specifically, to realize the gradation of an image or increase the density, inks are overlaid on the same pixel. However, the ink absorption amount of a printing medium is limited. If inks are overlaid beyond this limitation, inks overflow to blur the image.
SUMMARY OF THE INVENTION
The present invention has been made in consideration of the above problem, and has as its object to provide an image printing apparatus capable of printing a color image and a high appearance quality of monochromatic high-gradation image without exchanging a printing medium or ink ribbons and also printing a color image and a monochromatic high-gradation image on one printing medium as needed, an apparatus for controlling the same, and a printing apparatus.
To solve the above-described problem and achieve the above object, an image printing apparatus of the present invention has the following arrangement.
An image printing apparatus of the present invention comprises a first print nozzle group capable of ejecting at least one color ink, a second print nozzle group capable of ejecting black ink, and print control means for causing the first and second print nozzle groups to eject the inks onto a printing medium while moving the first and second print nozzle groups relative to the printing medium to selectively print a color image and a monochromatic image, wherein the density types (levels) of the black inks are increased as compared to those of any color ink.
In order to achieve the above problem, in the present invention, monochromatic inks of a larger number of density types than that of one color of Y, M, and C or R, G, and B inks, which has the largest number of density types, are prepared. An image to be printed is separated into monochromatic and color regions, and the color region image is printed with the color inks, and the monochromatic region image is printed with the monochromatic inks.
A method of controlling an image printing apparatus of the present invention has the following characteristic features.
In an image printing apparatus comprising a first print nozzle group capable of ejecting at least one color ink, a second print nozzle group capable of ejecting black ink, and print control means for causing the first and second print nozzle groups to eject the inks onto a printing medium while moving the first and second print nozzle groups relative to the printing medium to selectively print a color image and a monochromatic image, wherein the density types of the black inks are increased as compared to those of any color ink, the printing control means prints a color image and a monochromatic image having a higher gradation level than that of each color of the color image on one printing medium, and prints the color image and the monochromatic image in different print regions on one printing medium.
With this arrangement, the number of times of overprinting one pixel can be decreased, and the gradation and high density of a monochromatic image can be expressed.
A printing apparatus of the present invention has the following arrangement.
In a printing apparatus for performing gradation-printing using a plurality of black inks having different densities and color inks, the number of gradation levels which can be expressed by the plurality of black inks is larger than the number of gradation levels which can be expressed by the color ink.
Other features and advantages of the present invention will be apparent from the following description taken in conjunction with the acc

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Image printing apparatus, method of controlling the same,... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Image printing apparatus, method of controlling the same,..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Image printing apparatus, method of controlling the same,... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2439907

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.