Goal directed user interface

Amusement devices: games – Including means for processing electronic data – In a game including a simulated projectile

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C463S037000

Reexamination Certificate

active

06196917

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to the field of computers, and in particular to the field of computer games, simulations, and robotic control.
2. Description of Related Art
Users interact and control computer games and simulations via a variety of user interfaces. A common user interface is via a joystick with one or more buttons or triggers. The user controls the simulated movement of a game piece, such as an animated figure on a computer screen, by tilting the joystick in the direction that the user desires the game piece to move. Similarly, a user controls the simulated flight of an aircraft by tilting the joystick corresponding to the movement of controls on an actual aircraft. The joystick is also commonly used as an input device for remotely controlled equipment, such as model airplanes, factory traveling lifts, and the like. As the field of robotics continues to expand, more devices and equipment will be remotely controlled, predominantly via a computer interface between the user and the device being controlled.
Another common computer interface device is a mouse. Although a mouse is convenient for interacting with computer applications such as word processors and spreadsheets, its use as an interface device for games, simulations, and remote control is somewhat limited. Conventionally, the mouse is used to select from a menu of options to control the device. For example, the user may point to an animation of a control that is displayed on a screen, and click at differing locations on the control to effect different motions. In a game or simulation, the user may click on an animated figure and drag the figure to a new location, but such an instantaneous translation may be inconsistent with a sense of lifelike movement that most games and simulations strive to achieve. Touchpads and directional arrows on a keyboard are also commonly used, with similar interface characteristics as a mouse.
The user interface to a computer game or simulation is particularly problematic with regard to the control of figures and objects that can be moved independently. Traditionally, a single motion vector is associated with the user interface control. The user controls, for example, a simulated ping-pong paddle, and the motion of the simulated ping-pong ball is controlled directly by the motion or position of the ping-pong paddle. Similarly, a user controls the motion of a simulated aircraft, and controls the trajectory of a simulated projectile from the aircraft by appropriately orienting the simulated aircraft and then triggering the discharge of this projectile at this orientation. Some actual games or events, however, do not conform to this simulated paradigm. A football player does not necessarily pass the football in the same direction that he is traveling. A pilot can fire a guided missile in a direction that is different from the direction that the aircraft is traveling. Computer games and simulations must support the independent motion control of figures and objects if they are to convey a representation that is lifelike. In a conventional computer game or simulation, independent motion control is effected via a context switch. For example, dual controls are provided, either as two discrete joysticks, for example, or two discrete controls displayed on the computer screen. One of the joysticks or controls is used to control, for example, the motion of the football player, while the other is used to control the passing of the football. If only one joystick or control is available, the user effects the independent control via another switch that controls the interpretation of the input received via the single joystick or control. This explicit context switch, or the switch to a second control area on the screen, can be a disconcerting distraction that interferes with the intended simulation of lifelike behavior.
BRIEF SUMMARY OF THE INVENTION
It is an object of this invention to provide a user interface that is easy to use and allows for the lifelike movement of animated figures and objects. It is a further object of this invention to provide a user interface that allows for an independent control of the movement of multiple figures and objects without requiring a discrete context switch.
These objects and others are achieved by noting that, in many situations, the identification of a target objective is as significant as the direct control of the motion of an object toward that objective. That is, for example, in some games, the challenge lies in the control of a weapon to hit a target, whereas in other games, the challenge lies in the effective choice of targets. In a football scenario, one game may challenge the user's ability to maneuver a runner through a maze of blockers, whereas another game may challenge the user's ability to choose when to pass, and to whom to target with the pass. In many true life scenarios, the player consciously chooses a goal, and instincts and training effect a means of achieving the goal. That is, a forward end on a football team knows where he is to be at the culmination of each play. Most of the forward end's motion toward the given objective is the effect of relatively unconscious thought as he jogs and swerves around the opposing players. Conscious thoughts come into play if and when a situation arises that causes the player to modify the objective.
In accordance with this invention, the user controls the game or simulation by identifying the goal, or objective, of the movement of an object, rather than directly controlling that movement. The controlled object operates virtually autonomously in its motion toward the specified goal. To assure realism, the controlled object conforms to rules of motion, such as inertial effects, as well as rules of engagement with other objects, such as avoidance, collision, and the like. As the simulated play develops, the user may adjust the goal, thereby emulating the decision processes that occur during an actual play. By identifying the goal or objective, rather than the actual motion of the controlled object, the user interface is inherently more suitable for interaction via a mouse or a touch pad. For example, on a display of a football field, the user uses a mouse to point to the target location of a controlled forward end. After clicking at that location, the simulated forward end proceeds toward that location, in a substantially autonomous manner.
In accordance with another aspect of this invention, the user controls the motion of independent objects by identifying the goal of each object, independently. In the football scenario, the user controls the motion of the football by pointing to a target location for the football. When the user activates a switch, such as a mouse button or trigger, at the target location, the simulated football player that is carrying the football throws the football in the direction of the target location. The simulated football travels toward the target location, subject to rules of motion, aerodynamics, engagement, and the like. Note that the selection of the target location for the football is independent of the selection of a target location for the football carrier. Each button or switch on the input device is associated with a controlled object. For example, clicking the left button on a mouse identifies the target location of the carrier, and clicking the right button on the mouse identifies the target location of the football.
In an alternative embodiment of the invention, the goal directed user interface is used to control physical objects, such as semi-autonomous robots in a factory environment. In another embodiment, the user interacts with the physical environment, rather than with a computer screen, to identify the goals for such physical objects.


REFERENCES:
patent: 5624117 (1997-04-01), Ohkubo et al.
patent: 5890906 (1999-04-01), Macri et al.
patent: 5929844 (1999-07-01), Barnes
patent: 6001015 (1999-12-01), Nishiumi et al.
patent: 6068554 (2000-05-01), Tyler
patent: 0467720 (1992-01-01), None
Warcraft I

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Goal directed user interface does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Goal directed user interface, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Goal directed user interface will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2439148

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.