Semiconductor memory system, and access control method for...

Static information storage and retrieval – Addressing – Sync/clocking

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C365S238500, C365S239000

Reexamination Certificate

active

06256258

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor memory system using a DRAM or the like which can realize a high speed access.
A DRAM has been developed in integration to the highest level among MOS semiconductor memories because of the simplicity of a memory cell in a comparative sense and is now used as a main memory of all kinds of computer based apparatuses. On the other hand, there has been progress to in improving memory performance being driven by the rapid increase in capabilities of a microprocessor (MPU) in recent years: various kinds of DRAMs each provided with a high speed data cycle function have been proposed and some are already in early stages of mass production. Typical examples are the so-called synchronous DRAM (SDRAM) in which all I/O data are stored or retrieved in synchronism with a system clock and a double-data-rate SDRAM (DDR-SDRAM) which makes it possible to use both edges of a clock pulse as triggers for access though similar to the former in terms of operation, and the like. In addition to the above described DRAMs, a RAMBUS DRAM (RDRAM) (under specifications of Rambus Inc.) in which data transfer is enabled at a high speed with a protocol-based command, and the like have also been developed and a trend in which a conventional asynchronous DRAM is replaced with a synchronous DRAM can be assured to be a necessity in the future.
A characteristic of such a synchronous DRAM is that the maximal bandwidth is operated at a very high speed. As the maximal bandwidth of the latest SDRAM versions, for example, 100 Mbps has been achieved. A DDR-SDRAM and a R-DRAM are estimated to reach 200 Mbps and 800 Mbps respectively in the future. Such a high bandwidth, however, is realized only in burst access along a limited, specific row direction in a memory space. That is, a speed in a so-called random access operation in which a row address is changed can be attained only on almost the same order as a conventional asynchronous DRAM.
A hierarchical structure of a memory has been adopted as a general measure to cope with this situation in a computer system which adopts a DRAM as the main memory. In a concrete manner, the measure is that a cache memory which is constructed from an SDRAM which can realize a high speed access as compared with a DRAM is interposed between a MPU and the DRAM and data of part of the DRAM is cached in the SDRAM. In this case, a memory access from the MPU is performed or the high speed cache memory, and only when an access instruction enters an address space which is not cached in the cache memory, that is, when a cache miss occurs, an access is performed on the DRAM. A great improvement of a computer performance has been realized by adopting this measure even when operating speeds of the MPU and the DRAM are different from each other.
When a cache miss has occurs, however, read-out from the DRAM comes to be required and especially when a different row address in the same block in the DRAM memory space is accessed, there arises the maximal wait time for the MPU. This problem will be described with reference to
FIG. 14
below.
FIG. 14
shows an example of a read operation timing for an SDRAM. When a cache miss occurs in the above described computer system which adopts a hierarchical structure of memory and a necessity of access to an SDRAM as a main memory arises, a [precharge command (Precharge)] is issued to perform precharge to an address which is now activated from the system side at time t
1
. Subsequently, an [activate command (Active)] is issued from the MPU after a predetermined time has elapsed and a bank corresponding to a necessary memory space is activated. A [read command (Read)] is issued after another specific time elapsed. Data of a specific burst length is read out from the SDRAM in synchronism with a clock pulse at a time t
2
when a specific time has elapsed after the issuance of the read command. As shown here, the maximal bandwidth when a read operation is successively performed synchronously with a clock pulse is very high, whereas an effective bandwidth for random access in a cache miss is greatly decreased. That is, it is found that a portion of the time period between the time t
1
and the t
2
when no data is read out, in other words a wait time as viewed from the MPU side, is long.
In a concrete manner, in the case of the specifications of an SDRAM shown in
FIG. 14
, the maximal bandwidth in a random access cycle is of the order of 36% of that in a burst cycle at most. There will arise a high possibility for this to be a bottle neck in improving computer performance and therefore, the demand for a high performance DRAM has been increasing in which a high access time and a high speed cycle time are realized. Especially, in a multi-MPU system to which a current high-performance server machine is central, high importance is attached to not only high-speed burst transfer but high speed random access. Besides, in a consumer multi-media system in which real time reproduction of a dynamic image is the main object in the future, as well, a DRAM in which a high-speed random access is enabled in a similar way is considered to be a requirement.
With such demands in the backgrounds, an Enhanced SDRAM (ESDRAM) which has been announced from Enhanced Memory Systems Inc., as shown in
FIG. 15
, a Virtual Channel Memory (VCM) which has been announced from NEC Corp., as shown in
FIG. 16
, and the like have been proposed.
As described above, a DRAM, in which a high speed data cycle has been realized; represented by an SDRAM, an RDRAM and the like, suffers a long wait time when an access hit miss requires a random access occur, which is a problem causing a bottle neck in performance improvement of a system.
In the methods of
FIGS. 15 and 16
, in each of which a large capacity cache memory is provided in order to realize a high speed access time and a high speed cycle time, the overhead for a chip size is high, which in turn causes a problem that realization of the low cost is harder to achieve.
BRIEF SUMMARY OF THE INVENTION
The present invention has been made in light of the above described circumstances and it is accordingly an object of the present invention to provide a semiconductor memory system and an access control method for a semiconductor memory, in which high speed access is made possible without a specific accessory circuit provided while overhead for a chip size is suppressed.
A semiconductor memory system according to the present invention comprises: a semiconductor memory including a memory cell array in which memory cells are located at intersections between a plurality of bit line pairs and a plurality of word lines, the memory cell array of the semiconductor memory being divided into a plurality of cell array blocks, a decoder circuit for selecting a memory cell of the memory cell array, and a sense amplifier circuit for reading out data on a selected memory cell of the memory cell array; an access circuit for successively conducting access on the cell array blocks of the memory cell array of the semiconductor memory; and a control circuit for performing control to change a cycle time according to an access order of the cell array blocks when successive access is conducted on the cell array blocks of the memory cell array of the semiconductor memory.
The control circuit may perform access control in a first operation mode of a first cycle time when successive access within one cell array block of the memory cell array is conducted, and the control circuit may perform access control in a second operation mode of a second cycle time shorter than the first cycle time of the first operation mode when successive access covering the cell array blocks being apart from each other of the memory cell array is conducted.
When the memory cell array of a semiconductor memory adopts a shared sense amplifier system in which cell array blocks adjacent to each other share a series of sense amplifiers, the control circuit may perform access control in a third operation mode o

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Semiconductor memory system, and access control method for... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Semiconductor memory system, and access control method for..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Semiconductor memory system, and access control method for... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2438548

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.