Reagent preparation containing magnetic particles in tablet...

Chemistry: analytical and immunological testing – Involving an insoluble carrier for immobilizing immunochemicals – Carrier is inorganic

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C436S526000, C435S007500, C435S180000, C424S001250, C424S001290, C424S465000, C424S470000, C424S489000, C514S961000

Reexamination Certificate

active

06274386

ABSTRACT:

FIELD OF THE INVENTION
Subject matter of the invention is a reagent preparation for binding components of a sample in the form of a tablet, the use thereof for binding or purifying nucleic acids and a method of preparing a suspension of magnetic particles in a sample, and a method of incorporating magnetic particles in a sample.
DESCRIPTION OF THE RELATED ART
A problem which frequently arises in the analysis of liquid samples is that the components to be analyzed are present only in very minute amounts. Moreover, the sample also contains numerous particles which are not to be determined but render the determination less accurate. It is therefore expedient to bind the analytes to a solid phase and remove the particles which are not to be determined together with the liquid. The isolated analytes can then be detected at the solid phase. Recently, especially the inner walls of reaction vessels such as tubes have been used as solid phases. Another option is to add a bead to the reaction vessel which is capable of binding the analyte. The bead size is such that the separation of liquid and beads can be accomplished by simple pipetting. Recently, however, continuously operating instruments have been designed where the analyte is bound to magnetic particles, and the bound analyte together with the magnetic particle are separated from the surrounding liquid with the aid of a magnetic field. The magnetic particles are provided with a surface capable of binding an analyte.
These magnetic particle containing reagent preparations are offered in the form of suspensions to which the analyte-containing liquid to be assayed is added by pipetting. These pipetting steps are subject to deviations commonly found in connection with pipetting procedures. Further, pipetting errors are also difficult to trace back.
It was hence an object of the present invention to eliminate the disadvantages found in the prior art and provide magnetic particles which allow easy dosing.
SUMMARY OF THE INVENTION
Subject matter of the invention is hence a reagent preparation for binding components in a sample in the form of a tablet comprising a multitude of particles having a surface to which the components can essentially completely bind and excipients. Another subject matter of the invention is the use of these reagent preparations and a method of preparing magnetic suspensions.
Components are understood to be particulate or molecular material. This includes especially cells, e.g. viruses or bacteria, but also isolated human or animal cells such as leukocytes, then also immunologically active low and high molecular chemical compounds such as haptens, antigens, antibodies, and nucleic acids. Particularly preferred are nucleic acids such as DNA or RNA.
Samples as understood in the invention are for example clinical specimen such as blood, serum, mouth wash liquid, urine, cerebrospinal fluid, sputum, stool, punctate, and bone marrow samples. The sample can also stem from areas such as environmental analysis, food analysis or molecular-biological research, e.g. bacterial cultures, phage lysates, and products of amplification processes such as PCR.
A tablet as understood in the invention is a solid, formed body, preferably in the form of a disk or a more or less perfectly shaped sphere. Other similar embodiments are also conceivable. Tablets of this kind are commonly known from drugs. A tablet preferably has a defined weight which exceeds 5 mg.
A magnetic particle is a particle made of a material which can be attracted by a magnet, i.e. ferromagnetic or superparamagnetic materials. The invention prefers in particular superparamagnetic particles, especially those that are not premagnetized. Premagnetization as understood here is a process of bringing a material into contact with a magnet to increase resonance. Magnetide (Fe
3
O
4
) or Fe
2
O
3
are particularly preferred. A magnetic particle is, however, also understood to include materials which contain (smaller) magnetic particles. This includes in particular Iriodin 600 a pigment which is commercially available from Merck (Darmstadt, Germany). The invention prefers in particular particles with an average grain size of less than 100 &mgr;m. A particularly preferred grain size ranges between 10 and 60 &mgr;m. The preferred grain distribution is relatively homogeneous; in particular, there are almost no particles smaller than 10 &mgr;m or larger than 60 &mgr;m. Particles which satisfy this requirement are described for example in WO 90/06045.
DETAILED DESCRIPTION OF THE INVENTION
An essential element of the invention is the fact that magnetic particles have a surface to which components can bind. This binding can either be specific or relatively non-specific. Specific binding can be achieved by making use of a binding-specific interactions, e.g. antibodies and antigens, antibodies and haptens or complementary nucleic acids. A combination of these interactions is also possible.
A known method of modifying a surface is, for example, the coating of particles with a streptavidin layer. It is thus possible to generate a universal matrix to which specific components can be bound from the sample via conjugates of biotin and a certain antibody, hapten or nucleic acid. The expert, especially one from the field of immunoassays, is familiar with corresponding embodiments.
A relatively non-specific binding is the interaction between a glass-like surface and nucleic acids. The binding of nucleic acids from agarose gel in the presence of sodium iodide in ground flint glass is known from Proc Natl Acad USA 76, 615-619 (1979). U.S. Pat. No. 2,233,169 describes magnetic particles whose glass portion can bind nucleic acids.
The invention proposes that the component to be determined bind essentially completely to the magnetic particles. The expert can easily determine the necessary amount of particles by varying the amount of magnetic particles to be added. As understood in the invention, an essentially complete binding means binding of more than 60%, particularly preferred more than 90% of the component to be bound found in the sample.
Excipients essentially serve to maintain the shape of the tablet, i.e. to link the magnetic particles to form a tablet. Preferred excipients of the invention are those which dissolve rapidly in the sample where the reaction is to take place. As preferred liquid samples are aqueous solutions, it is possible to use those excipients that are usually employed in the manufacture of drugs. Polyethyleneglycol (PEG) and polyvinylpyrrolidon (PVP) are particularly preferred.
DE-A-4406139 describes a magnetic depot drug with improved absorbance of the active components. The tablet contains a disk-like magnet and the active component is released over period of several hours.
The International Journal of Pharmaceutics 119, 47-55 (1995) also describes a tablet with a delayed release of the drug.
STP Pharmasciences Vol 4, 425-430 (1994) describes the manufacture of ferrrite-containing magnetic tablets and their administration to dogs.
Moreover, the tablet of the invention can also contain stabilizing reagents. In a preferred manner, sugars such as D-mannite, trehalose, and sorbite are added.
Surprisingly, magnetic particles, especially those with a glass surface, can be stored in the form of a tablet without visible hydrolysis of the glass and hence without visible elution of the iron from the magnetic portion.
The magnetic particles are preferably glass magnet pigments or polymer magnetic beads or other magnetic particles with a size ranging between 0.1 &mgr;m and 100 &mgr;m; e.g. those described in DE 19520398.
The preparation can also contain additives to facilitate the binding process of the components. This includes specificity enhancing substances like the above mentioned conjugates; but also substances which modify the sample properties such that the binding of the components to the surface is facilitated. When nucleic acids are used these are chaotropic salts such as guanidinium hydrochloride, sodium iodide, sodium perchlorate or the like. Chaotropic salts of this

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Reagent preparation containing magnetic particles in tablet... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Reagent preparation containing magnetic particles in tablet..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Reagent preparation containing magnetic particles in tablet... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2438429

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.