Surgical cross-connecting apparatus and related methods

Surgery – Instruments – Orthopedic instrumentation

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06238396

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to a surgical cross-connecting apparatus and a cross-connecting surgical screw apparatus for use with implantation rods, and related methods of securing implantation rods using a surgical cross-connecting apparatus.
The bones and connective tissue of an adult human spinal column consists of more than 20 discrete bones coupled sequentially to one another by a tri-joint complex. The complex consists of an anterior disc and two posterior facet joints. The anterior discs of adjacent bones are cushioned by cartilage spacers referred to as intervertebral discs. The over 20 bones of the spinal column are anatomically categorized as one of four classification: cervical, thoracic, lumbar, or sacral. The cervical portion of the spine which comprises the top of the spine up to the base of the skull, includes the first 7 vertebrae. The intermediate 12 bones are thoracic vertebrae, and connect to the lower spine comprising the 5 lumbar vertebrae. The base of the spine is a sacral bones (including the coccyx).
The spinal column of bones is high complex in that it includes the over 20 bones coupled to one another, housing and protecting critical elements of the nervous system having innumerable peripheral nerves and circulatory bodies in close proximity. Despite its complexity, the spine is a highly flexible structure, capable of a high degree of curvature and twist in nearly every direction.
Genetic or developmental irregularities, trauma, chronic stress, tumors and disease, however, can result in spinal pathologies which either limit this range of motion, or which threatens the critical elements of the nervous system housed within the spinal column. A variety of systems have been disclosed in the art which achieve this immobilization by implanting artificial assemblies in or on the spinal column. These assemblies may be classified as anterior posterior or lateral implants. Lateral and anterior assemblies are coupled to the anterior portion of the spine which is in the sequence of vertebral bodies. Posterior implants generally comprise pairs of rods, which are aligned along the axis which the bones are to be disposed, and which are then attached to the spinal column by either hooks which couple to the lamina or attach to the transverse processes, or by screws which are inserted through the pedicles. In order to provide enhanced torsional rigidity, these implants generally include cross-connecting devices which couple the rods together transverse to the axis of the implants. These cross-connecting devices may couple directly to the rods themselves, or may be attached to the pedicle screws.
It is desirable to provide cross-connecting devices that are adjustable and can form angular installments using rotatable hooks. It is further desirable to provide a cross-connecting device with surgical screws for ease of installment.
SUMMARY OF THE INVENTION
The present invention relates to a surgical cross-connecting apparatus. The apparatus comprises a first element, a second element, an adjustable tightening device and at least two rotatable hook elements. The first element has opposing ends, one end has at least one aperture and the other end has a recessed surface which includes a central bore. The second element had two opposing ends, one end has at least one aperture and the other end has a recessed surface with an elongated aperture. The recessed surface of the second element is positioned to overlap the recessed surface of the first element. The tightening device is positioned through the elongated aperture of the second element and within the central bore of the first element to secure the second element onto the first element. The tightening device is designed to rotatably fit and slidably move within the elongated aperture of the second element. The rotatable hooking element comprises a hook and an adjustable securing device; each of the hooking devices being inserted within the apertures of the first and second elements. Since the hooking elements of the present invention are rotatable, the apparatus of the present invention, particularly the first and second elements, can form advantageous angular positions. The angular position allows the surgeons the ability to make a multitude of adjustments during installment of the apparatus. The angular positions may minimize or completely eliminate the need to remove boney sections of the vertebrae body during the installment process. In another embodiment, the securing device comprises a housing and a protruding element and during the securing process, the protruding element is swaged or flared outwardly to secure the securing device onto the hooking elements. In still another embodiment, the securing device of the rotatable hooking element is factory set.
In another embodiment, the central bore of the recessed surface of the first element includes a protruding member and the protruding member is designed to rotatably fit and slidably move within the elongated aperture of the second element.
In yet another embodiment, the tightening device comprises a threaded shaft and a head. In still another embodiment, the head of the tightening device comprises a recess coaxial to the shaft and designed to engage a fastening device. In still yet another embodiment, the recess is hexagon-shaped and the fastening device is a hexagon socket screw key.
In a further embodiment, the securing device of the hooking element comprises an aperture coaxial to the hook and designed to engage a fastening device. In still a further embodiment, the aperture of the securing device of the hooking element is hexagon-shaped and the fastening device is a hexagon socket screw key. In yet a further embodiment, the apparatus of the present invention further comprises a plurality of implantation rods whereby the rods are positioned within the hooks.
In another embodiment, the present invention relates to a cross-connecting surgical screw system. In still another embodiment, the system comprises a first element, a second element, an adjustable tightening device and at least two surgical screw devices. In yet another embodiment, the first element has opposing ends, one end having a first surgical screw system and the other end having a recessed surface with a central bore. The second element has opposing ends, one end has a surgical screw and the other end has a recessed surface with an elongated aperture. The recessed surface of the second element is positioned to overlap the recessed surface of the first element. The adjustable tightening device is positioned through the elongated aperture of the second element and within the central bore of the first element to secure the second element onto the first element. The tightening device is designed to rotatably fit and slidably move within the elongated aperture by the second element. Each of the first and second surgical screw devices comprises a screw at one end and a rod securing channel at the other end. In this embodiment, the screw is stationary and monoaxial.
In still another embodiment, the surgical screw device includes a locking device for securing the rod within the rod securing element. In yet another embodiment, each of the first and second surgical screw devices comprises a screw member, a receiver member, a pressure cap and a locking device. In one embodiment, the screw member, receiver member and pressure cap are factory set. In still yet another embodiment, the screw member comprises a head and a shaft; the head of the screw member has a spherical undersurface and a conical tapered recess. In a further embodiment, the receiver member has upper and lower portions, a u-shaped rod receiving channel, and an axial bore. In still a further embodiment, the u-shaped channel has two lateral legs at the upper portion of the receiver member and forms an opening leading to the axial bore. In yet a further embodiment, the axial bore near the lower portion of the receiver member includes an inwardly conical tapered surface, and the conical tapered surface has a diameter larger t

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Surgical cross-connecting apparatus and related methods does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Surgical cross-connecting apparatus and related methods, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Surgical cross-connecting apparatus and related methods will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2437083

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.