Nucleic acid mediated electron transfer

Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving nucleic acid

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

435 5, 435 912, 536 243, 536 266, 536 231, 536 2433, C12Q 168, C12Q 170, C07H 2104, C07H 2102

Patent

active

058244735

ABSTRACT:
The present invention provides for the selective covalent modification of nucleic acids with redox active moieties such as transition metal complexes. Electron donor and electron acceptor moieties are covalently bound to the ribose-phosphate backbone of a nucleic acid at predetermined positions. The resulting complexes represent a series of new derivatives that are bimolecular templates capable of transferring electrons over very large distances at extremely fast rates. These complexes possess unique structural features which enable the use of an entirely new class of bioconductors and photoactive probes.

REFERENCES:
patent: 4707352 (1987-11-01), Stavrianopoulos
patent: 4711955 (1987-12-01), Ward et al.
patent: 4755458 (1988-07-01), Rabbani et al.
patent: 4849513 (1989-07-01), Smith et al.
patent: 4868103 (1989-09-01), Stavrianopoulos et al.
patent: 4894325 (1990-01-01), Englehardt et al.
patent: 4943523 (1990-07-01), Stavrianopoulos
patent: 4952685 (1990-08-01), Stavrianopoulos
patent: 4994373 (1991-02-01), Stavrianopoulos
patent: 5002885 (1991-03-01), Stavrianopoulos
patent: 5013831 (1991-05-01), Stavrianopoulos
patent: 5082830 (1992-01-01), Brakel et al.
patent: 5175269 (1992-12-01), Stavrianopoulos
patent: 5241060 (1993-08-01), Englehardt et al.
patent: 5278043 (1994-01-01), Bannwarth et al.
patent: 5312527 (1994-05-01), Mikkelsen et al.
patent: 5328824 (1994-07-01), Ward et al.
patent: 5449767 (1995-09-01), Ward et al.
patent: 5476928 (1995-12-01), Ward et al.
patent: 5495908 (1996-03-01), Fawcett et al.
patent: 5565552 (1996-10-01), Magda et al.
patent: 5573906 (1996-11-01), Bannwarth et al.
Hobbs et al., "Polynucleotides Containing 2'-Amino-2'deoxyribose and 2'-Azido-2'-deoxyribose," Biochemistry, 12(25):5138-5145 (1973).
Jenkins et al., "A Sequence-Specific Molecular Light Switch: Tethering of an Oligonucleotide to a Dipyridophenazine Complex of Ruthenium (II)" J. Am. Chem. Soc., 114:8736-8738 (1992).
Kojima et al., "A DNA Probe of Ruthenium Bipyridine Complex Using Photocatalytic Activity," Chemistry Letter, Vol. No. 10 1889-1892 (1989).
Paterson, "Electric Genes: Current Flow in DNA Could Lead to Faster Genetic Testing," Scientific American, 33-34 (May 1995) Vol. No. not applicable.
Clery, "DNA Goes Electric," Science, 267:1270 (Mar. 1995).
Mestel, "`Electron Highway` Points to Identity of DNA," NewScientist, p. 21 (4 Mar. 1995).
Arkin, M., et al., "Evidence for Photoelectron Transfer Through DNA Intercalation", Abstracts, p. 526. vol. not relevant.
Baum, R. M., "Views on Biological, Long-Range Electron Transfer Stir Debate", C&EN, pp. 20-23 (Feb. 22, 1993). vol. not relevant.
Bechtold, R., et al., "Ruthenium-Modified Horse Heart Cytochrome c: Effect of pH and Ligation on the Rate of Intremolecular Electron Transfer Between Ruthenium(II) and Heme(III)", J. Phys. Chem., 90(16): 3800-3804 (1986).
Farver, O., et al., "Long-range intramolecular electron transfer in azurins", Proc. Natl. Acad. Sci. USA, 86:6968-6972 (1989).
Bowler, B. E., et al., "Long-Range Electron Transfer in Donor (Spacer) Acceptor Molecules and Proteins", Progress in Inorganic Chemistry: Bioinorganic Chemistry, 38:259-322 (1990).
Brun, A. M., et al., "Photochemistry of Intercalated Quaternary Diazaaromatic Salts", J. Am. Chem. Soc., 113:8153-8159 (1991).
Chang, I-Jy, et al., "High-Driving-Force Electron Transfer in Metalloproteins: Intramolecular Oxidation of Ferrocytochrome c Ru(2,2'-bpy).sub.2 (im) (His-33).sup.3+ ", J. Am. Chem. Soc., 113:7056-7057 (1991).
Davis, L. M., et al., "Electron Donor Properties of the Antitumour Drug Amsacrine as Studied by Fluorescence Quenching of DNA-Bound Ethidium", Chem.-Biol. Interactions, 62:45-58 (1987).
Degani, Y., et al., "Electrical Communication between Redox Centers of Glucose Oxidase and Electrodes via Electrostatically and Covalently Bound Redox Polymers", J. Am. Chem. Soc., 111:2357-2358 (1989).
Degani, Y., et al., "Direct Electrical Communication between Chemically Modified Enzymes and Metal Electrodes. 1. Electron Transfer from Glucose Oxidase to Metal Electrodes via Electron Relays, Bound Covalently to the Enzyme", J. Phys. Chem., 91(6):1285-1288 (1987).
Dreyer, G. B., et al., "Sequence-specific cleavage of single-stranded DNA: Oligodeoxynucleotide-EDTA.cndot.Fe(II)", Proc. Natl. Acad. Sci. USA, 82:698-972 (1985).
Durham, B. et al., "Electron-Transfer Kinetics of Singly Labeled Ruthenium(II) Polypyridine Cytochrome Derivatives", American Chemical Society, pp. 181-193 (1990).
Durham, B., et al., "Photoinduced Electron-Transfer Kinetics of Singly Labeled Ruthenium Bis(bipyridin) Dicarboxybipyridine Cytochrome c Derivatives", Biochemistry, 28:8659-8665 (1989).
Elias, H., et al., "Electron-Transfer Kinetics of Zn-Substituted Cytochrome c and Its Ru(NH.sub.3).sub.5 (Histidine-33) Derivatives", J. Am. Chem. Soc., 110:429-434 (1988).
Fox, M. A., et al., "Light-Harvesting Polymer Systems", C&EN, pp. 38-48 (Mar. 15, 1993). vol. not relevant.
Francois, J-C., et al., "Periodic Cleavage of Poly(dA) by Obligothymidyulates Covalently Linked to the 1,10-Phenanthroline-Copper Complex", Biochemistry, 27:2272-2276 (1988).
Friedman, A. E., et al., "Molecular `Light Switch` for DNA: Ru(bpy.sub.2 (dppz).sup.2+ ", J. Am. Chem. Soc., 112-4960-4962 (1990).
Fromherz, P., et al., "Photoinduced Electron Transfer in DNA Matrix from Intercalated Ethidium to Condensed Methylviologen", J. Am. Chem. Soc., 108:5361-5362 (1986).
Gregg, B. A., et al., "Redox Polymer Films Containing Enzymes. 1. A Redox-Conducting Epoxy Cement: Synthesis, Characterization, and Electrocatalytical Oxidation of Hydroquinone", J. Phys. Chem., 95:5970-5975 (1991).
Heller, A., et al., "Amperometric biosensors based on three-dimensional hydrogel-forming epoxy networks", Sensors and Actuators, 13-14:180-183 (1993).
Heller, A., "Electrical Wiring of Redox Enzymes", Acc. Chem. Res., 23:128-134 (1990).
Meade. T. J., "Driving-Force Effects on the Rate of Long-Range Electron Transfer in Ruthenium-Modified Cytochrome c", J. Am. Chem. Soc., 111:4353-4356 (1989).
Murphy, C. J., et al., "Long-Range Photoinduced Electron Transfer Through a DNA Helix", Science, 262:1025-1029 (1993).
Orellana, G., et al., "Photoinduced Electron Transfer Quenching of Excited Ru(II) Polypyridyls Bound to DNA: The Role of the Nucleic Acid Double Helix", Photochemistry and Photobiology, 54(4):499-509 (1991).
Purugganan, M. D., et al., Accelerated Electron Transfer Between Metal Complexes Mediated DNA, Science, 241:1645-1649 (1988).
Risser, S. M., et al., "Electron Transfer in DNA: Predictions of Exponential Growth and Decay of Coupling with Donor-Acceptor Distance", J. Am. Chem. Soc., 115(6):2508-2510 (1993).
Satyanarayana, S., et al., "Neither .DELTA.-nor .LAMBDA.-Tris(phenanthroline)ruthenium(II) Binds to DNA by Classical Intercalation", Biochemistry, 31(39):9319-92324 (1992).
Schuhmann, W., et al., "Electron Transfer between Glucose Oxidase and Electrodes via Redox Mediators Bound with Flexible Chains to the Enzyme Surface", J. Am. Chem. Soc., 113:1394-1397 (1991).
Strobel, S. A., et al., "Site-Specific Cleavage of a Yeast Chromosome by Oligonucleotide-Directed Triple-Helix Formation", Science, 249:73-75 (1990).
Dreyer, G. B. et al., "Sequence-specific cleavage of single-stranded DNA: Oligeodeoxynucleotide-EDTA.cndot.Fe(II)", Proc. Natl. Acad. Sci. USA, 82:968-972 (1985).
Telser, J., et al., "DNA Duplexes Covalently Labeled at Two Sites: Synthesis ans Characterization by Steady-State and Time-Resolved Optical Spectroscopies",J. Am. Chem. Soc., 111:7226-7232 (1989).
Telser, J., et al., "DNA Oligomers and Duplexes Containing a Covalently Attached Derivative of Tris (2,2'-bipyridine ruthenium(II): Synthesis and Characterization by Thermodynamic and Optical Spectroscopic Measurements", J. Am. Chem. Soc., 111:7221-7226 (1989).
Turro. N. J., et al., "Molecular Recognition and Chemistry in Restricted Reaction Spaces. Photophysics and Photoinduced Electron Transfer on the Surfaces of Micelles, Dendrimers, and DNA", Acc. Chem. Res., 24:332-340 (1991).
Winkler, J. R., et al., "Electron Transfer in Ruthenium-Modified Proteins", Chem. Rev., 92:369-379

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Nucleic acid mediated electron transfer does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Nucleic acid mediated electron transfer, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Nucleic acid mediated electron transfer will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-242865

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.