Laser

Coherent light generators – Particular beam control device – Optical output stabilization

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

372 18, 372 19, H01S 313

Patent

active

056469527

DESCRIPTION:

BRIEF SUMMARY
BACKGROUND OF THE INVENTION

This invention relates to a laser for providing a single longitudinal mode (SLM) output.
A laser resonator can sustain waves which have any integral number of half wavelengths. These discrete frequencies of oscillation are known as modes of the resonator. In principle all mode frequencies which lie within the gain bandwidth of the laser medium can oscillate. Usually lasers run on many modes simultaneously, they are multi-transverse and multi-longitudinal modes. Each mode starts from noise (spontaneous emission), a random thermal like process. Initially the mode intensities grow exponentially with time and each mode competes with its neighbours for the available gain. This fierce competition leads to the suppression of weak modes, those that see low net gain or which started with low intensity. The modes nearest the gain centre see the highest gain and reach the saturating intensity first. This line narrowing process can be enhanced by lengthening the build-up time of the oscillation in order to allow more time for mode competition. Etalons and other interferometric techniques are also used to introduce additional losses on unwanted modes. However getting a high gain solid state laser, such as Neodymium: YAG or YLF, to run SLM is still difficult and it has previously been found necessary to ensure the oscillator also runs in a single transverse mode.
The present inventors have established that a diode pumped end pumped Neodymium master oscillator will run TEMoo and SLM. This is discussed in the paper: Single Frequency, end pumped Nd:YLF laser excited by a 12 mJ diode-laser array: Optical Letters; Dec. 1, 1992, Vol. 17, No. 23, the contents of which are hereby incorporated by way of reference. The SLM performance is achieved by slow Q-switching and cavity length control and by pumping the oscillator at low level (1 mJ output). The single mode which oscillates is generally that which is closest to the centre of the gain bandwidth (line centre). However this mode has been found to be unstable as the environment changes, and the mode frequency drifts away from line centre until two longitudinal modes occur.
An extension to the technique of "pre-lase" Q-switching which ensures that a TEMoo mode, Q-switched NdYAG laser produces SLM oscillation on every shot is disclosed in Optics Communications, 43 (1982) 6, pages 414-418. This discloses monitoring the pre-lase output and only opening the Q-switch when SLM oscillation is detected, relying on the heat generated in the lasing medium in conjunction with the coefficient of expansion of the lasing medium to perform a resonator length sweep with a sufficient shift in path length to ensure that SLM oscillation is present at some point during the sweep, normally within the period in which four or five pre-lase pulses occur. The document also discloses including an actuator to physically alter the path length of the resonator if the coefficient of expansion of the laser medium is not sufficient.


SUMMARY OF THE INVENTION

It is an object of the present invention is to provide an improved laser the output of which comprises a single longitudinal mode.
According to the present invention there is provided a laser comprising: a laser medium; a resonator; a Q-switch for controlling the level of oscillation within the resonator; Q-switch control means; means for applying a pump beam to the resonator in an end pumped geometry such that the laser operates in either a single longitudinal mode or in two neighbouring longitudinal modes; and means for detecting the presence of two longitudinal modes; characterised in further comprising path length control means responsive to the detection of the presence of two longitudinal modes for controlling means for varying the optical path length of the resonator by a discrete length substantially equal to an odd integral multiple of one quarter of the wavelength at which the laser is operating.
The inventors have realised that the instability of the SLM is due to small changes in the optical path length of the re

REFERENCES:
patent: 4197513 (1980-04-01), Bell et al.
patent: 5412676 (1995-05-01), Schnier et al.
Rae et al; "Single Frequency, End Pumped Nd:YLF Laser Excited By a 12-MJ Diode Laser Array"; Optics Letters; Dec. 1992; pp. 1673-1675.
D.C. Hanna et al; "Stable Single-Mode Operation Of a Q-Switched Laser By a Simple Resonator Length Control Technique" Optics Communications, vol. 43, No. 6, pp. 414-418, Nov. 15, 1982.
C.F. Rae et al; "Single-Frequency, End-Pumped nd:YLF Laser Excited By a 12-mj Diode-Laser Array" Optics Letters, vol. 17, No. 23, pp. 1673-1675, Dec. 1, 1992.
Patent Abstracts of Japan, vol. 11, No. 338 (E-553) Nov. 5, 1987 & JP A62119991 (NEC Corp) Jun. 1, 1987.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Laser does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Laser, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Laser will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2413043

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.