Event correlation in telecommunications networks

Boots – shoes – and leggings

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

G06F 1700

Patent

active

056468644

DESCRIPTION:

BRIEF SUMMARY
This invention relates to a method of correlating events in a telecommunication network. The correlation method is based on the use of a model of the network in which at least some of the network elements are represented in a computer simulation by respective program modules. The invention finds particular but not exclusive application in the correlation of transmission network alarms, that is, the identification of the single most probable cause of a group of alarms.
Telecommunications networks are normally composed of a hierarchy of various types of equipment or network elements, as shown partially in FIG. 1. These types include bearers 1 to 5, and multiplexers 6 to 9. Multiplexers enable a number of low-speed circuits to be carried over a single higher speed bearer. The multiplexed bearer is said to carry a number of tributary circuits, for example, a 2-8 multiplexer 6 combines four 2 Mbit/s channels or tributaries on to an 8 Mbit/s bearer. The 8 Mbit/s bearer can be thought of logically as four tributary circuits. A series of multiplexers, e.g. 2-8 multiplexer 6, 8-34 multiplexer 7, and 34-140 multiplexers 8, allow construction of the multiplexed hierarchy. There are also skip multiplexers, such as the 2-34 multiplexer 9, that step up two or more transmission rate levels in one piece of equipment. A complete end-to-end circuit is made up of a number of bearers.
Multiplexing is used to reduce transmission costs by improving bearer media usage (a 565 Mbit/s bearer circuit can carry 7680 channels) and to decrease the number of bearer channels that need to be monitored and maintained so improving the manageability of the network.
The pieces of equipment in the network can develop faults such as loss of synchronization, power failure or degraded signal. The pieces of equipment will send out alarm signals which are converted to alarm reports by the monitoring systems. Other items of equipment dependent on an item with a fault will also register alarm messages as their function is prevented by the fault. Further equipment dependent on these may also send alarms and so on. Thus one higher order item of equipment failing can result in a deluge of alarms. It can be difficult to identify quickly and accurately the cause of all the alarms, which can result in delays in rectifying the fault.
The purpose of correlation of alarm signals in a telecommunications network is to reduce the amount of raw information passed on to the network managers and to add value to the information that is passed on. As a result of correlation, the raw fault reports are processed into fewer, richer correlation reports, allowing maintenance engineers to identify necessary repairs and prioritise them.
Correlation in this context means identifying the single probable cause of a group of alarms using information in the alarms themselves and in the model of the network. The correlation is performed in real time to provide identification of the root cause of the faults. To achieve this manually is an arduous and time consuming task as the monitoring systems can generate a wealth of alarms as a result of a single network fault.
A particular complication in large networks built up over a long period is that not all equipment is monitored or the monitoring systems are inconsistent in the conditions which cause alarms. So a complete set of alarms is unlikely. It is also possible for the alarm itself to fill. Also the different technologies involved mean that not all alarms pertaining to a particular fault will be received at the same time. It is important that such factors do not prevent a current correlation being made on the basis of other alarms.
Correlation can also be used in contexts other than alarm monitoring. For example, it can be used to monitor how a system functions, for example monitoring what effects occur as a result of network reconfigurations. It may also be used to identify traffic patterns, for planning, market research, or fraud detection purposes.
According to The present invention there is provided a method of correlating e

REFERENCES:
patent: 5157667 (1992-10-01), Carusone, Jr. et al.
patent: 5253184 (1993-10-01), Kleinschnitz
patent: 5483637 (1996-01-01), Winokur et al.
patent: 5594861 (1997-01-01), Jonsson et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Event correlation in telecommunications networks does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Event correlation in telecommunications networks, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Event correlation in telecommunications networks will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2412452

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.