Modified ribozymes

Organic compounds -- part of the class 532-570 series – Organic compounds – Carbohydrates or derivatives

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

536 231, 536 232, 435 6, 435 9131, 4351721, 514 44, C07H 2104, C12Q 168, A61K 4800

Patent

active

056726953

DESCRIPTION:

BRIEF SUMMARY
Certain naturally occuring ribonucleic acids (RNAs) are subject to self-cleavage. The first reported example is the cleavage of the ribosomal RNA precursor of the protozoan Tetrahymena (for a review see Cech, Ann.Rev. Biochem. 59 (1990), 543-568) which requires guanosine as cofactor. A number of examples of RNA cleavage have been subsequently discovered in viroid, virusoid and satellite RNAs (for reviews see Sheldon et al. in Nucleic Acids and Molecular Biology (1990) Vol. 4, pg. 227-242, ed. F. Eckstein and D. M. J. Lilley, Springer Verlag Berlin Heidelberg; Symons, TIBS 14 (1989), 445-450). These cleavages involve site-specific breakage of a phosphodiester bond in the presence of a divalent cation such as Mg.sup.2+, generating a 5'-hydroxyl and a 2',3'-cyclic phosphodiester terminus. Sequence analysis around the site of self-cleavage of several of such RNAs has led to the identification of a common structural feature essential for cleavage which was named a "hammerhead" structure (Hutchins et al., Nucleic Acids Res. 14 (1986) 3627-3640). This structure consists of three helices and 13 conserved nucleotides (framed in below scheme) which form a three dimensional structure amenable to cleavage at one particular position. The self-catalyzed cleavage is normally an intramolecular process, i.e. a single RNA molecule contains all the functions necessary for cleavage. However, Uhlenbeck (Nature 328 (1987), 596-600) has demonstrated that this hammerhead structure does not have to be embodied in one strand but can be made up of two strands. These two strands combine to form the hammerhead structure which leads to phosphodiester bond cleavage (indicated by an arrow) in one of the strands (strand S) whereas the other (strand E) remains unaltered and can participate in many cleavage reactions. This strand meets the definitions of an enzyme and is called a ribozyme. Whereas the framed sequences (below scheme) are conserved the others may vary provided that the structure of base paired and the single stranded regions remains intact. ##STR1##
The cleavage reaction after the trinucleotide GUC has been studied in detail (Ruffner et al., Gene 82 (1989), 31-41; Fedor and Uhlenbeck, Proc.Natl.Acad.Sci. USA 87 (1990), 1668-1672). Ribozymes with new specificities have also been constructed (Haseloff and Gerlach, Nature 334 (1988), 585-591) indicating that cleavage can for example also take place after the sequences GUA, GUU, CUC, AUC and UUC.
Further examples for RNA enzymes are the hairpin RNA (Hampel et al., Nucleic Acids Res. 18 (1990), 299-304), as well as RNA containing proteins such as the telomerase (Greider and Blackburn, Nature 337 (1989), 331-337) and the RNase P (Baer et al., in Nucleic Acids and Molecular Biology (1988), Vol. 3, pp. 231-250, ed. F. Eckstein and D. M. J. Lilley, Springer Verlag, Berlin/Heidelberg).
Ribozymes are potentially of interest for use as therapeutic agents (for review see Rossi and Sarver, TIBTECH 8 (1990), 179-183). A possible strategy would be to destroy an RNA necessary for the expression of both foreign genes such as vital genes and particular endogenous genes. This requires the construction of a RNA molecule which is able to form a hammerhead or a hairpin structure with the target RNA and to cleave this at a predetermined position. A first application to the inhibition of the HIV-1 virus by this strategy has been reported (Sarver et al., Science 247 (1990), 1222-1224). Other examples of the action of targeted hammerhead ribozymes in vivo are Cammeron and Jennings (Proc.Natl.Acad. Sci. USA 86 (1986), 9139-9143) and in vitro Cotten et al. (Mol.Cell.Biol. 9 (1989), 4479-4487).
Further, other useful catalytic properties of ribozymes are known, e.g. dephosphorylase and nucleotidyl transferase activities (see Patent Application W088/04300). Therein RNA enzymes are disclosed which are capable of dephosphorylating oligonucleotide substrates with high sequence specifity, which distinguishes them from known protein enzymes. RNA molecules also can act as RNA polymerases, differing from protein e

REFERENCES:
patent: 5149796 (1992-09-01), Rossi et al.
patent: 5298612 (1994-03-01), Jennings et al.
patent: 5334711 (1994-08-01), Sproat et al.
Barinaga, Science 262:1512-1514 (1993).
Saenger, "Principles of nucleic acid structure", pp. 159-200, Springer-Veg, New York, 1984.
Stull et al., Pharm. Res. 12:465-483 (1995).
Baer et al., Nucleic Acids and Molecular Biology, vol. 3, pp. 231-250, Eckstein and Lilley eds, Springer Verlag, Berlin/Heidelberg (1988).
Bass and Cech, "Ribozyme Inhibitors: Deoxyguanosine and Dideoxyguanosine are Competitive Inhibitors of Self-Splicing of the Tetrahymena Ribosomal Ribonucleic Acid Precursor," Biochemistry 25:4473-4477 (1986).
Been and Cech, "One Binding Site Determines Sequence Specificity of Tetrahymena Pre-rRNA Self-Splicing, Trans-Splicing and RNA Enzyme Activity," Cell 47:207-216 (1986).
Black et al., Virology 48:537-545 (1972).
Cameron and Jennings, "Specific Gene Expression by Engineered Ribozymes in Monkey Cells," Proc. Natl. Acad. Sci. USA 86:9139-9143 (1989).
Cech, "A Model for the RNA-Catalyzed Replication of RNA," Proc. Natl. Acad. Sci. USA, 83: 4360-4363 (1986).
Cech, "RNA as an Enzyme," Scientific American 255:76-84 (1986).
Cech, "The Chemistry of Self-Splicing RNA and RNA Enzymes," Science 236:1532-1539 (1987).
Cech, "Self-Splicing of Group I Introns," Ann. Rev. Biochem. 59:543-568 (1990).
Cedergren et al., "Catalytic RNA as an Anti-HIV Agent: Design and Delivery to Cells," Abstract NIH Conference Oct. 21-24 1990, San Diego, California.
Cedergren et al., Abstract presentation at Cold Spring Harbor meeting: RNA Processing, May 15-19, 1991.
Cedergren et al., Abstract presentation at Cold Spring Harbor meeting: RNA Processing, May 16-20, 1990.
Chowrira et al., "Four Ribose 2'-Hydroxyl Groups Essential for Catalytic Function of the Hairpin Ribozyme," J. Biol. Chem. 268:19458-19462 (1993).
Chowrira and Burke, "Binding and Cleavage of Nucleic Acids by the Hairpin Ribozyme," Biochemistry 30:8518 (1991).
Codington et al., J. Org. Chem. 29:558-567 (1964).
Cotten, "The in vivo application of ribozymes," TIBS 8:174-178 (1990).
Cotten et al., "Ribozyme, Antisense RNA, and Antisense DNA Inhibition of U7 Small Nuclear Ribonucleoprotein-Mediated Histone Pre-mRNA Processing In Vitro," Mol. Cell. Biol. 9:4479-4487 (1989).
Doerr & Fox, J. Org. Chem. 32:1462 (1976).
Doudna et al., "A Multisubunit that is a Catalyst of and Template for Complementary Strand RNA Synthesis," Science 251:1605 (1991).
Ellington and Szostak, Nature 346:818-822 (1990).
Engli et al., "Crystal Structure of an Okazaki Fragment at 2-A Resolution," Proc. Natl. Acad. Sci. USA 89:534-538 (1992).
Fedor and Uhlenbeck, "Substrate sequence effects on hammerhead RNA catalytic efficiency," Proc. Natl. Acad. Sci. USA 87:1668-1672 (1990).
Greider and Blackburn, Nature 337:331-337 (1989).
Hampel et al., "`Hairpin` Catalytic RNA Model: Evidence for Helices and Sequence Requirement for Substrate RNA," Nucleic Acids Research 18:299-304 (1990).
Haseloff and Gerlach, "Simple RNA Enzymes with New and Highly Specific Endoribonuclease Activities," Nature 334:585-591 (1988).
Herschlag and Cech, Nature 344:405-409 (1990).
Hobbs et al., Biochemistry 11:43367-4334 (1972).
Hobbs et al., Biochemistry 12:5138-5145 (1973).
Hutchins et al., "Self-cleavage of Plus and Minus RNA Transcripts of Avocado Sunblotch Viroid," Nucleic Acids Research 14:3627-3640 (1986).
Ikehara and Miki, Chem. Pharm. Bull. 26:2449-2453 (1978).
Imazawa and Eckstein, J. Org. Chem. 44:2039-2041 (1979).
Ludwig, "A New Route to Nucleoside 5'-Triphosphates," Acta Biochim. Biophys. Acad. Sci. Hung. 16:131-133 (1981).
Ludwig and Eckstein, "Rapid and Efficient Synthesis of Nucleoside 5'-O-(1-Thiotriphosphates), 5'-Triphosphates and 2',3'-Cyclophosphorothioates Using 2-Chloro-4H-1,3,2-Benzodioxaphosphorin-4-one," J. Org. Chem. 54:631-635 (1989).
Mengel and Guschlbauer, Ang. Chem. 90:557-558 (1979).
Mungall et al., J. Org. Chem. 40:1659 (1975).
Nielsen et al., "Sequence-Selective Recognition of DNA by Strand Displaceme

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Modified ribozymes does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Modified ribozymes, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Modified ribozymes will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2257450

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.