Miscellaneous active electrical nonlinear devices – circuits – and – Specific identifiable device – circuit – or system – With specific source of supply or bias voltage
Patent
1996-12-11
1999-04-13
Callahan, Timothy P.
Miscellaneous active electrical nonlinear devices, circuits, and
Specific identifiable device, circuit, or system
With specific source of supply or bias voltage
323242, 323266, 323282, 323299, G05F 110
Patent
active
058942432
ABSTRACT:
A controlled output voltage is provided for a switching mode power converter operating in the continuous conduction mode without requiring a feedback path coupled to monitor the output voltage. Instead, a voltage related to the input voltage is monitored. The monitored voltage is compared to a periodic waveform for forming a switch control signal. In the case of a buck converter operating as a voltage regulator, over each period of the periodic waveform, the periodic waveform is representative of the inverse function. In the case of a boost converter operating as a voltage regulator or buck converter operating as a bus terminator or power amplifier, over each period of the periodic waveform, the periodic waveform has a linear slope. The switch control signal controls a duty cycle of the power switches. Therefore, switching is controlled in an open loop, rather than in a closed loop. By monitoring a voltage related to the input voltage, rather than the output voltage, an integrated circuit for controlling the buck converter or boost converter requires few pins and can sink or source current.
REFERENCES:
patent: 3294981 (1966-12-01), Bose
patent: 3603809 (1971-09-01), Uchiyama
patent: 3660753 (1972-05-01), Judd et al.
patent: 3883756 (1975-05-01), Dragon
patent: 4311954 (1982-01-01), Capel
patent: 4392103 (1983-07-01), O'Sullivan et al.
patent: 4407588 (1983-10-01), Arichi et al.
patent: 4422138 (1983-12-01), Kornrumpf
patent: 4437146 (1984-03-01), Carpenter
patent: 4454558 (1984-06-01), Huddart
patent: 4456872 (1984-06-01), Froeschle
patent: 4529927 (1985-07-01), O'Sullivan et al.
patent: 4651231 (1987-03-01), Douglas, Jr.
patent: 4672303 (1987-06-01), Newton
patent: 4672518 (1987-06-01), Murdock
patent: 4674020 (1987-06-01), Hill
patent: 4677366 (1987-06-01), Wilkinson et al.
patent: 4691159 (1987-09-01), Ahrens et al.
patent: 4731574 (1988-03-01), Melbert
patent: 4736151 (1988-04-01), Dishner
patent: 4761725 (1988-08-01), Henze
patent: 4801859 (1989-01-01), Dishner
patent: 4837495 (1989-06-01), Zansky
patent: 4841220 (1989-06-01), Tabisz et al.
patent: 4845420 (1989-07-01), Oshizawa et al.
patent: 4920309 (1990-04-01), Szepesi
patent: 4929882 (1990-05-01), Szepesi
patent: 4940929 (1990-07-01), Williams
patent: 4941080 (1990-07-01), Sieborger
patent: 4947309 (1990-08-01), Jonsson
patent: 4975823 (1990-12-01), Rilly et al.
patent: 5028861 (1991-07-01), Pace et al.
patent: 5034873 (1991-07-01), Feldtkeller
patent: 5138249 (1992-08-01), Capel
patent: 5146399 (1992-09-01), Gucyski
patent: 5278490 (1994-01-01), Smedley
patent: 5359281 (1994-10-01), Barrow et al.
patent: 5397976 (1995-03-01), Madden et al.
patent: 5412308 (1995-05-01), Brown
patent: 5414341 (1995-05-01), Brown
patent: 5434767 (1995-07-01), Batarseh et al.
patent: 5440473 (1995-08-01), Ishii et al.
patent: 5450000 (1995-09-01), Olsen
patent: 5457621 (1995-10-01), Munday et al.
patent: 5457622 (1995-10-01), Arakawa
patent: 5461302 (1995-10-01), Garcia et al.
patent: 5477132 (1995-12-01), Canter et al.
patent: 5479089 (1995-12-01), Lee
patent: 5481178 (1996-01-01), Wilcox et al.
patent: 5485361 (1996-01-01), Sokal
patent: 5491445 (1996-02-01), Moller et al.
patent: 5502370 (1996-03-01), Hall et al.
patent: 5532577 (1996-07-01), Doluca
patent: 5552695 (1996-09-01), Schwartz
patent: 5565761 (1996-10-01), Hwang
patent: 5568041 (1996-10-01), Hesterman
patent: 5570276 (1996-10-01), Cuk et al.
patent: 5592071 (1997-01-01), Brown
patent: 5592128 (1997-01-01), Hwang
patent: 5610502 (1997-03-01), Tallant, II et al.
patent: 5617306 (1997-04-01), Lai et al.
patent: 5627460 (1997-05-01), Bazinet et al.
patent: 5691889 (1997-11-01), Bazinet et al.
"Nonlinear-Carrier Control for High Power Factor Rectifiers Based On Flyback, Cuk, or Sepic Converters," R. Zane and D. Maksimovic, Applied Power Electronics Conf., pp. 814-820, 1996.
"Nonlinear-Carrier Control for High Power Factor Boost Rectifiers," D. Maksimovic, Y. Jang, R. Erikson, Applied Power Electronics Conf., pp. 635-641, 1995.
"Off-Line And One-Cell IC Converters Up Efficiency", Frank Goodenough, Electronic Design, pp. 55-56, 58, 60, 62-64, Jun. 27, 1994.
"Designing with hysteretic current-mode control", Gedaly Levin and Kieran O'Malley, Cherry Semi-Conductor Corp., EDN, pp. 95-96, 98, 100-102, Apr. 28, 1994.
"Step-Up/Step Down Converters Power Small Portable Systems", Bruce D. Moore, EDN, pp. 79-84, Feb. 3, 1994.
"Small-Signal High-Frequency Analysis Of The Free-Running Current-Mode-Controlled Converter", Richard Redl, pp. 897-906, IEEE, 1991.
Callahan Timothy P.
Kim Jung Ho
Micro Linear Corporation
LandOfFree
Three-pin buck and four-pin boost converter having open loop out does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Three-pin buck and four-pin boost converter having open loop out, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Three-pin buck and four-pin boost converter having open loop out will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-224792