Superheterodyne method and apparatus for measuring the refractiv

Optics: measuring and testing – By polarized light examination – With birefringent element

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

356358, 356349, 356351, G01B 902

Patent

active

057643628

ABSTRACT:
A method and apparatus for measuring fluctuations in the refractive index of a gas, such as air, in a measurement path (66) may be used to measure displacement of an object (67) independent of these fluctuations. A coherent source light (1,4) provides two source light beams (11,12) having source wavelengths (.lambda..sub.1, .lambda..sub.2) along the measurement path (66) which are substantially harmonically related to each other. Beams (11, 12) make multiple passes over measurement path (66) where the number of passes for the respective light beams are harmonically related, the relationship of harmonics being substantially the same as said substantially harmonic relationship between the wavelengths to provide heterodyne phase shifts based on the provided source wavelengths and the number of passes over the measurement path (66) for providing a superheterodyne modulation phase substantially insensitive to motion along the measurement path (66).

REFERENCES:
patent: 3647302 (1972-03-01), Zipla et al.
patent: 4005936 (1977-02-01), Redman et al.
patent: 4688940 (1987-08-01), Sommargren et al.
patent: 4907886 (1990-03-01), Dandliker
patent: 4948254 (1990-08-01), Ishida
patent: 5404222 (1995-04-01), Steven
patent: 5537209 (1996-07-01), Steven
Lis, Steven A., "An Air Turbulence Compensated Interferometer For IC Manufacturing", presented at the SPIE Conference on Optical/Laser Microlithography VIII, Feb. 24, 1995, Santa Monica, California .
Zanoni, Dr. Carl A., "Differential Interferometer Arrangements for Distance and Angle Measurements: Principles, Advantages and Applications", VDI Berichte, 1989, pp. 93-106.
Ishida, Akira., "Two Wavelength Displacement-Measuring Interterometer Using Second-Harmonic Light to Eliminate Air-Turbulence-Induced Errors", Japanese Journal of Applied Physics, vol. 28(3), Mar. 1989, pp. 587-589.
Zhu, Yucong, et al., "Long-Arm Two-Color Interferometer for Measuring the Change of Air Refractive Index", SPIE, Optics in Complex Systems, vol. 1319, 1990, pp. 538-539.
Earnshaw, K.B., et al., "Two-Laser Optical Distance-Measuring Instrument That Corrects for the Atmospheric Index of Refraction", Applied Optics, vol. 11, No. 4, Apr. 1972, pp. 749-754.
Hernandez, E.N., et al., "Field Tests of a Two-Laser (4416A and 6328A) Optical Distance-Measuring Instrument Correcting for the Atmospheric Index of Refraction", Journal of Geophysical Research, vol. 77, No. 35, Dec. 10, 1972, pp. 6994-6998.
Dandliker, Rene., et al., "Two-Wavelength Laser Interferometry Using Superheterodyne Detection", Optics Letters, Vol 13, No. 5, May 1988, pp. 339-341.
Dandliker, Rene, "High-Accuracy Distance Measurements With Multiple-Wavelength Interferometry", Optical Engineering, vol. 34, No. 34, No. 8, Aug. 1995, pp. 2407-2412.
Sodnik, Zoran, et al., "Two-Wavelength Double Heterodyne Interferometry Using A Matched Grating Technique", Applied Optics, vol. 30, No. 22, Aug. 1, 1991, pp. 3139-3144.
Manhart, S., et al., "Diode Laser and Fiber Optics for Dual-Wavelength Heterodyne Interferometry", SPIE, Optics in Complex Systems, vol. 1319, 1990, pp. 214-216.
Jones, Frank E., "The Refractivity of Air", Journal of Research of the National Bureau of Standards, vol. 86, No. 1, Jan.-Feb. 1981, pp. 27-32.
Estler, W. Tyler, "High-Accuracy Displacement Interferometry in Air", Applied Optics, vol. 24, No. 6, Mar. 15, 1985, pp. 808-815.
Berg, Eduard, et al., "Distance Corrections for Single- and Dual-Color Lasers by Ray Tracing", Journal of Geophysical Research, vol. 85, No. B11, Nov. 10, 1980, pp. 6513-6520.
Slater, L.E. et al., "A Multiwavelength Distance-Measuring Instrument for Geophysical Experiments", Journal of Geophysical Research, vol. 81, No. 35, Dec. 10, 1976, pp. 6299-6306.
Erickson, Kent E., "Long-Path Interferometry Through an Uncontrolled Atmosphere", Journal of the Optical Society of America, vol. 52, No. 7, Jul. 1962, pp. 781-787.
Bender, Peter, L., et al., "Correction of Optical Distance Measurements for the Fluctuating Atmospheric Index of Refraction", Journal of Geophysical Research, vol. 70, No. 10, May 15, 1965, pp. 2461-2462.
Terrien, J., "An Air Refractometer For Interference Length Metrology", Bureau International des Poids et Mesures, France, vol.1 No.3, Mar. 1965, pp. 80-83.
Matsumoto, Hirokazu, et al., "Effects of the Atmospheric Phase Fluctuation on Long-Distance Measurement", Applied Optics, vol. 23, No. 19, Oct. 1, 1984, pp. 3388-3394.
Gibson, George N., et al., "Optical Path Length Fluctuations In the Atmosphere,"Applied Optics, vol. 23, No. 23, Dec. 1, 1984, pp. 4383-4389.
Bobroff, Norman, "Residual Errors in Laser Interferometry From Air Turbulence and Nonlinearity", Applied Optics, vol. 26, No. 13, Jul. 1, 1987, pp. 2676-2682.
Bobroff, Norman, "Recent Advances in Displacement Measuring Interferometry", Measurement Science & Technology, vol. 4, No. 9, Sep. 1993, pp. 907-926.
Hariharan, P., et al., "Double-Passed Two-Beam Interferometers", Journal of the Optical Society of America, vol. 50, No. 4, Apr. 1960, pp. 357-361.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Superheterodyne method and apparatus for measuring the refractiv does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Superheterodyne method and apparatus for measuring the refractiv, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Superheterodyne method and apparatus for measuring the refractiv will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2207144

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.