Chemistry: molecular biology and microbiology – Apparatus – Bioreactor
Patent
1994-11-07
1998-06-09
Beisner, William H.
Chemistry: molecular biology and microbiology
Apparatus
Bioreactor
435 292, 4352972, 435372, 435402, C12M 300
Patent
active
057632669
DESCRIPTION:
BRIEF SUMMARY
TECHNICAL FIELD
The field of the invention is methods and devices for the growth of normal mammalian cells in culture, including the maintenance and selective growth of human stem and/or hematopoietic cells.
BACKGROUND ART
There is significant interest in the ability to use cells for a wide variety of therapeutic purposes. The hematopoietic system exemplifies the extraordinary range of cells involved in protection of mammalian hosts from pathogens, toxins, neoplastic cells, and other diseases. The hematopoietic system is believed to evolve from a single stem cell, from which all the lineages of the hematopoietic system derive. The particular manner in which the stem cell proliferates and differentiates to become determined in its lineage is not completely understood, nor are the factors defined. However, once the stem cell has become dedicated to a particular lineage, there appear to be a number of factors, for example colony stimulating factors, which allow, and may direct the stem cell to a particular mature cell lineage.
There are many uses for blood cells. Platelets find use in protection against hemorrhagings an well an a source of platelet derived growth factor. Red blood cells can find use in transfusions to support the transport of oxygen. Specific lymphocytes may find application in the treatment of various diseases, where the lymphocyte is specifically sensitized to an epitome of an antigen. Stem cells may be used for genetic therapy as well as for rescue from high dose cancer chemotherapy. These and many other purposes may be contemplated.
In order to provide these cells, it will be necessary to provide a means, whereby cells can be grown in culture and result in the desired mature cell, either prior to or after administration to a mammalian host. The hematopoietic cells are known to grow and mature to varying degrees in bone, as part of the bone marrow. It therefore becomes of interest to recreate a system which provides substantially the same environment as is encountered in the bone marrow, as well as being able to direct these cells which are grown in culture to a specific lineage.
In this vein, U.S. Pat. No. 4,721,096 describes a 3-dimensional system involving stromal cells for the growth of hematopoietic cells. See also the references cited therein. Glanville et al., Nature (1981) 292:267-269, describe the mouse metallothionein-I gene. Wong et al., Science (1985) 228:810-815, describe human GM-CSF. Lemischka et al., Cell (1986) 45:917-927, describe retrovirus-mediated gene transfer as a marker for hematopoietic stem cells and the tracking of the fate of these cells after transplantation. Yang et al., Cell (1986) 47:3-10, describe human IL-3. Chen et al., Okayama, Mol. Cell. Biol. (1987) 7:2745-2752, describe transformation of mammalian cells by plasmid DNA. Greaves et al., Cell (1989) 56:979-986, describe the human CD2 gene. Civin et al., J. Immunol. (1984) 133:1576-165, describe the CD34 antigen. Martin et al., Cell (1990) 63:203211, describe human S-CSF. Forrester et al., J. Cell Science, (1984) 70:93-110, discuss a parallel flow chamber. Coulombel et al., J. Clin. Invest., (1986) 75:961, describe the loss of WP cells in static cultures.
Tissue Engineering is a new and growing part of biotechnology. Its goal is to reconstitute fully or partially functioning human tissue in vitro to enable a variety of clinical and other applications. Several studies have been carried out recently that are aimed at reconstituting functioning human tissues in vitro. To date, perhaps the cultivation of human skin has been most successful.
The development of prolific in vitro human bone marrow systems has been long desired since such systems would enable a broad range of clinical, as well as scientific, applications. Such applications include: a, T-cells or any malignant cells, platelets.
Although long-term human bone marrow cultures (LTHBMCS) developed in the late 1970s and early 1980s were initially disappointing in their longevity and cell productivity (see Greenberger (1984) "Long-term Hematopoietic
REFERENCES:
patent: 4225671 (1980-09-01), Puchinger et al.
patent: 4833083 (1989-05-01), Saxena
patent: 4894342 (1990-01-01), Guinn et al.
patent: 5061620 (1991-10-01), Tsukamoto et al.
patent: 5135853 (1992-08-01), Dziewulski et al.
patent: 5459069 (1995-10-01), Palsson et al.
Batt et al. "Inclined Sedimentation for Selective Retention of Viable Hybridomas in a Continuous Suspension Bioreactor " Biotechnology Prog. vol. 6 (1990) pp. 458-464.
Gail K. Naughton, et al.; Journal of Cellular Biochemistry; Hematopoeisis on Nylon Mesh Microenviroments; 19th Annual Meeting (1990).
Jerry Caldwell, et al.; Biotechnology Progress; Influence of Medium Exchange Schedules on Metabolic, Growth, and GM-CSF Secretion Rates of Genetically Engineered NIH-3T3 Cells; vol. 7; pp. 1-8; (1991).
Jerry Caldwell, et al.; Journal of Cellular Physiology; Culture Perfusion Schedules Influence the Metabolic Activity and Granulocyte-Macrophage Colony-Stimulating Factor Production Rates of Human Bone Marrow Stromal Cells; vol. 147, No. 2; pp. 344-353; (1991).
Richard M. Schwartz, et al.; Blood; In Vitro Myelopoiesis Stimulated by Rapid Medium Exchange and Supplementation with Hematopoietic Growth Factors; vol. 78, No. 12; pp. 3155-3161; (1991).
Richard M. Schwartz, et al.; Proceedings of the National Academy of Sciences; Rapid Medium Perfusion Rate Significantly Increases the Productivity and Longevity of Human Bone Marrow Cultures;; vol. 88, No. 15; pp. 6760-6764; (1991).
Emerson Stephen G.
Palsson Bernhard O.
Schwartz Richard M.
Beisner William H.
The Regents of the University of Michigan
LandOfFree
Methods, compositions and devices for maintaining and growing hu does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Methods, compositions and devices for maintaining and growing hu, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods, compositions and devices for maintaining and growing hu will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2198148