Stacked capacitor truncated damped sinusoidal defibrillation wav

Surgery: light – thermal – and electrical application – Light – thermal – and electrical application – Electrical therapeutic systems

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

607 7, 607 5, A61N 139

Patent

active

059787066

ABSTRACT:
An apparatus for generating a waveform for use in externally defibrillating the heart of a patient includes a plurality of capacitors chargeable to respective charge potentials. A control apparatus is operatively coupled with the capacitors to sequentially interconnect the capacitors in a circuit with one another to generate the waveform. Structure including e.g. electrodes is operatively coupled with the capacitors and the control apparatus to apply the waveform to the chest of the patient. The waveform preferably includes an emulated first-phase substantially sinusoidally shaped pulse component having a first polarity. According to biphasic embodiments, the waveform also includes an emulated second-phase substantially sinusoidally shaped pulse component having a second polarity. The control apparatus preferably is constructed to truncate the emulated first-phase pulse component at a predetermined time, preferably based on a design rule used to calculate pulse duration. The design rule calculates the pulse duration to correspond to substantially the peak response of the patient's heart-cell membrane to the first-phase pulse component. Corresponding method embodiments provide additional advantages.

REFERENCES:
patent: 3886950 (1975-06-01), Ukkestad et al.
patent: 4637397 (1987-01-01), Jones et al.
patent: 5350403 (1994-09-01), Stroetmann et al.
patent: 5507781 (1996-04-01), Kroll et al.
patent: 5830236 (1998-11-01), Mouchawar et al.
patent: 5833712 (1998-11-01), Kroll et al.
On The Intensity-Time Relations for Stimulation By Electric Currents. II, H.A. Blair, The Journal of General Physiology, Rockefeller Institute for Medical Research, vol. 15, pp. 731-755, 1932.
Optimal Truncation of Defibrillation Pulses, Werner Irnich, Pacing and Clinical Electrophysiology, Futura Publishing Co., vol. 18, No. 4, pp. 673-688, Apr. 1995.
Choosing the Optimal Monophasic and Biphasic Waveforms for Ventricular Defibrillation, G.P. Walcott, R. G. Walker, A. W. Cates, W. Krassowska, W. M. Smith, R. E. Ideker, Journal of Cardiovascular Electrophysiology, Futura Publishing Co., vol. 6, No. 9, pp. 737-750, Sep. 1995.
Optimizing Defibrillation Through Improved Waveforms, Michael Block and Gunter Breithardt, Pacing and Clinical Electrophysiology, Futura Publishing Co., vol. 18, No. 3, Part II, pp. 526-538, Mar. 1995.
A Conceptual Basis for Defibrillation Waveforms, Brian G. Cleland, Pacing and Clinical Electrophysiology, Futura Publishing Co., vol. 19, No. 8, pp. 1186-1195, Aug. 1996.
A Minimal Model of the Single Capacitor Biphasic Defibrillation Waveform, Mark W. Kroll, Pacing and Clinical Electrophysiology, Future Publishing Co., vol. 17, No. 11, Part I, pp. 1782-1792, Nov. 1994.
On The Intensity-Time Relations For Stimulation By Electric Currents. I, H.A. Blair, The Journal of General Physiology, Rockefeller Institute for Medical Research, vol. 15, pp. 709-729, 1932.
Ventricular Defibrillation Using Biphasic Waveforms: The Importance of Phasic Duration, A.S.L. Tang, S. Yabe, J. M. Wharton, M. Doker, W.M. Smith, R. E. Ideker, Journal of the American College of Cardiology, American College of Cardiology, vol. 13, No. 1, pp. 207-214, Jan. 1989.
A Minimal Model of the Monophasic Defibrillation Pulse, Mark W. Kroll, Pacing and Clinical Electrophysiology, Futura Publishing Co., vol. 16, No. 4, Part I, pp. 769-777, Apr. 1993.
Strength-Duration and Probability of Success Curves for Defibrillation With Biphasic Waveforms, S.A. Feeser, A.S.L. Tang, K.M. Kavanagh, D.L. Rollins, W.M. Smith, P.D. Wolf, R.E. Ideker, Circulation, American Heart Association, vol. 82, No. 6, pp. 2128-2141, Dec. 1990.
Improved Defibrillation Thresholds With Large Contoured Epicardial Electrodes and Biphasic Waveforms, E.G. Dixon, A.S.L. Tang, P.D. Wolf, J.T. Meador, M.J. Fine, R.V. Calfee, R.E. Ideker, Circulation, American Heart Association, vol. 76, No. 5, pp. 1176-1184, Nov. 1987.
Truncated Biphasic Pulses for Transthoracic Defibrillation, G.H. Bardy, B.E. Gliner, P.J. Kudenchuk, J.E. Poole, G.L. Dolack, G. K. Jones, J. Anderson, C. Troutman, G. Johnson, Circulation, American Heart Association, vol. 91, No. 6, pp. 1768-1774, Mar. 1995.
Transthoracic Defibrillation of Swine With Monophasic and Biphasic Waveforms, B.E. Gliner, T.E. Lyster, S.M. Dillion, G.H. Bardy, Circulation, American Heart Association, vol. 92, No. 6, pp. 1634-1643, Sep. 1995.
Multicenter Comparison of Truncated Biphasic Shocks and Standard Damped Sine Wave Monophasic Shocks for Transthoracic Ventricular Defibrillation, G.H. Bardy, F.E. Marchlinski, A.D. Sharma, S.J. Worley, R.M. Luceri, R. Yee, B.D. Halperin, C.L. Fellows, T.S. Ahern, D.A. Chilson, D.L. Packer, D.J. Wilber, T.A. Mattioni, R. Reddy, R.A. Kronmal, R. Lazzara, Circulation, American Heart Associate, vol. 94, No. 10, pp. 2507-2514, Nov. 1996.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Stacked capacitor truncated damped sinusoidal defibrillation wav does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Stacked capacitor truncated damped sinusoidal defibrillation wav, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Stacked capacitor truncated damped sinusoidal defibrillation wav will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2149087

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.