Nucleic acid molecules encoding single-chain antigen-binding pro

Organic compounds -- part of the class 532-570 series – Organic compounds – Carbohydrates or derivatives

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

4241331, 4241361, 5303873, C07H 2102, C07H 2104

Patent

active

06103889&

ABSTRACT:
Compositions of, genetic constructions coding for, and methods for producing multivalent antigen-binding proteins are described and claimed. The methods include purification of compositions containing both monomeric and multivalent forms of single polypeptide chain molecules, and production of multivalent proteins from purified monomers. Production of multivalent proteins may occur by a concentration-dependent association of monomeric proteins, or by rearrangement of regions involving dissociation followed by reassociation of different regions. Bivalent proteins, including homobivalent and heterobivalent proteins, are made in the present invention. Genetic sequences coding for bivalent single-chain antigen-binding proteins are disclosed. Uses include all those appropriate for monoclonal and polyclonal antibodies and fragments thereof, including use as a bispecific antigen-binding molecule.

REFERENCES:
patent: 4085443 (1978-04-01), Dubois et al.
patent: 4266253 (1981-05-01), Matherat
patent: 4355023 (1982-10-01), Ehrlich et al.
patent: 4414629 (1983-11-01), Waite
patent: 4434156 (1984-02-01), Trowbridge
patent: 4444878 (1984-04-01), Paulus
patent: 4470925 (1984-09-01), Auditore-Hargreaves
patent: 4479895 (1984-10-01), Auditore-Hargreaves
patent: 4642334 (1987-02-01), Moore et al.
patent: 4704692 (1987-11-01), Ladner
patent: 4816397 (1989-03-01), Boss et al.
patent: 4816567 (1989-03-01), Cabilly et al.
patent: 4853871 (1989-08-01), Pantoliano et al.
patent: 4861581 (1989-08-01), Epstein et al.
patent: 4881175 (1989-11-01), Ladner et al.
patent: 4908773 (1990-03-01), Pantoliano et al.
patent: 4939666 (1990-07-01), Hardman
patent: 4946778 (1990-08-01), Ladner et al.
patent: 5019368 (1991-05-01), Epstein et al.
patent: 5091513 (1992-02-01), Huston et al.
patent: 5132405 (1992-07-01), Huston et al.
patent: 5160723 (1992-11-01), Welt et al.
patent: 5258498 (1993-11-01), Huston et al.
patent: 5260203 (1993-11-01), Ladner et al.
patent: 5476786 (1995-12-01), Huston
patent: 5534254 (1996-07-01), Huston et al.
patent: 5591828 (1997-01-01), Bosslet et al.
patent: 5763733 (1998-06-01), Whitlow et al.
patent: 5767260 (1998-06-01), Whitlow et al.
patent: 5844094 (1998-12-01), Hudson et al.
LeBerthon, B. et al., "Enhanced Tumor Uptake of Macromolecules Induced by a Novel Vasoactive Interleukin 2 Immunoconjugate," Cancer Research 51(10):2694-2698 (May 15, 1991).
Gillies, S.D. et al., "Antibody-targeted interleukin 2 stimulates T-cell killing of autologous tumor cells," Proc. Natl. Acad. Sci. USA 69(4):1428-1432 (Feb. 1992).
"Nothing to lose but their chains," The Economist (Feb. 27, 1988).
Ahlem, et al., "Regiospecific Coupling of FAB' Fragments for the Production of Synthetic Bifunctional Antibodies," Targeted Cellular Cytotoxicity and Bispecific Antibodies, Annapolis, ND, Poster No. 18 (Oct. 22-25, 1989).
Aldred, et al., "Synthesis of rat transferrin in Escherichia coli containing a recombinant bacteriophage," Chem. Abstracts 101:189 Abstract No. 185187m (1984).
Andrew, et al., "Production of a Single Chain Bispecific Antibody by Recombinant DNA Technology," Second Intl. Conf. on Bispecific Antibodies and Targeted Cellular Cytotox., Seillac, France, Poster No. 21 (Oct. 9-13, 1990).
Aussage, et al., "Bispecific Heteroconjugate of Anti-HB's and Anti-Fc .gamma. RI Prepared by SPDP Method: Production and Bispecificity Analysis," Second Intl. Conf. on Bispecific Antibodies and Targeted Cellular Cytotox., Seillac, France, Poster No. 41 (Oct. 9-13, 1990).
Bedzyk, et al., "Immunological and Structural Characterization of a High Affinity Anti-fluorescein Single-chain Antibody," J. Biol. Chem. 265(30):18615-18620 (Oct. 1990).
Bird, et al., "Single-Chain Antigen-Binding Proteins," Science 242:423-426 (Oct. 1988).
Bishop, J.E., "Proteins Made by Genex Could Compete With Far Larger Monoclonal Antibodies," The Wall Street Journal (Oct. 21, 1988).
Boss, et al., "Assembly of functional antibodies from immunoglobulin heavy and light chains synthesised in E. coli," Nucleic Acids Res. 12(9):3791-3806 (1985).
Boulianne, et al., "Production of functional chimaeric mouse/human antibody," Nature 312:643-646 (1984).
Brennan, et al., "Preparation of Bispecific Antibodies by Chemical Recombination of Monoclonal Immunoglobulin G.sub.1 Fragments," Science 229:81-83 (Jul. 1985).
Brewin-Wilson, D., "Cross-Linked Antibodies Turn Cytotoxic Cells against Cancer," Oncol. Biototech. News 3(6):7 (Jun. 1989).
Colcher, et al., "In Vivo Tumor Targeting of a Recombinant Single-Chain Antigen-Binding Protein," J. Natl. Cancer Inst. 82(14):1191-1197 (Jul. 1990).
Corvalan, J.R.F. and Smith, W., "Construction and characterisation of a hybrid-hybrid monoclonal antibody recognising both carcinoembryonic antigen (CEA) and vinca alkaloids," Cancer Immunol. Immunother. 24:127-132 (1987).
Corvalan, et al., "Tumor Therapy with Vinca Alkaloids Targeted by a Hybrid-Hybrid Monoclonal Antibody Recognising both CEA and Vinca Alkaloids," Int. J. Cancer Supp. 2:22-25 (1988).
Cumber, et al., "Comparative Stabilities in Vitro and in Vivo of a Recombinant Mouse Antibody FvCys Fragment and A bisFvCys Conjugate," J. Immunol. 149(1):120-126 (1992).
Davies, D.R. and Metzger, H., "Structural Basis of Antibody Function," Ann. Rev. Immunol. 1:87-177 (1983).
Field, et al., "Miniantibodies produced in E. coli--Fusion protein expression using dual origin vector," Dialog File 357: Biotechnology Abstracts, Accession No. 89-05519 (1987).
Field, et al., "Miniantibodies produced in E. coli--Hen egg lysozyme variable region monoclonal antibody gene cloning in E. coli," Dialog File 357: Biotechnology Abstracts, Accession No. 87-12016 (1987).
Foglesong, et al., "Preparation and analysis of bifunctional immunoconjugates containing monoclonal antibodies OKT3 and BABR1," Cancer Immunol. Immunother. 30:177-184 (Oct. 1989).
Foglesong, et al., "Preparation and Characterization of Bifunctional Heteroconjugates Containing OKT3 and Antitumor Antibodies," Third Intl. Conf. on Monoclonal Antibody Immunoconjugates for Cancer, San Diego, CA, Abstract No. 65 (Feb. 4-6, 1988).
George, et al., "Production of a Bispecific Antibody by Linkage of Two Recombinant Single Chain Fv Molecules," J. Cell. Biochem. Supp. 15E:127 Abstract No. N206 (Mar. 1991).
Ghetie, V. and Moraru, I., "Preparation and Applications of Multivalent Antibodies with Dual Specificity," Meth. Enzymol. 92:523-543 (1983).
Gilliland, et al., "Bispecific Monoclonal Antibodies and Antibody Heteroconjugates for Enhancement of T Cell Activation and for Targeting Effector Activity Against HIV-Infected Cells," Targeted Cellular Cytotoxicity and Bispecific Antibodies, Annapolis, MD, Conf. Abstract (Oct. 22-25, 1989).
Glennie, et al., "Bispecific and Trispecific Antibody Derivatives for the Retargeting of Cytotoxic T Cells," Targeted Cellular Cytotoxicity and Bispecific Antibodies, Annapolis, MD, Conf. Abstract (Oct. 22-25, 1989).
Glennie, et al., "Preparation and Performance of Bispecific F(ab'.gamma.).sub.2 Antibody Containing Thioether-Linked Fab'.gamma. Fragments," J. Immunol. 139(7):2367-2375 (Oct. 1987).
Goldenberg, et al., "Cancer Diagnosis and Therapy with Radiolabeled Antibodies," in: Immunoconjugates, Antibody Conjugates in Radioimaging and Therapy of Cancer, C.-W. Vogel, ed., Oxford University Press, NY, pp. 259-280 (1987).
Gorog, et al., "Use of bispecific hybrid antibodies for the development of a homogeneous enzyme immunoassay," J. Immunol. Meth. 123:131-140 (Sep. 1989).
Griffiths, et al., "Human anti-self antibodies with high specificity from phage display libraries," EMBO J. 12(2):725-734 (Feb. 1993).
Herron, J.N., "Equilibrium and Kinetic Methodology for the Measurement of Binding Properties in Monoclonal and Polyclonal Populations of Antifluorescyl-IgG Antibodies," in: Fluorescein Hapten: An Immunological Probe, E.W. Voss, ed., CRC Press, Boca Raton, FL, pp. 49-76 (1984).
Honda, et al., "A human hybrid hybridoma producing a bispecific monoclonal antibody that can target tumor cells for attack by Pseudomonas aeruginosa exotoxin A," Cytotechnology 4:59-68 (Jul. 1990).
Huber, R. "Structural Basis for Antigen-Antib

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Nucleic acid molecules encoding single-chain antigen-binding pro does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Nucleic acid molecules encoding single-chain antigen-binding pro, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Nucleic acid molecules encoding single-chain antigen-binding pro will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2008333

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.