Non-invasive determination of mechanical characteristics in the

Surgery – Truss – Pad

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

128649, 128677, 73575, 364508, A61B 510

Patent

active

047717920

DESCRIPTION:

BRIEF SUMMARY
BACKGROUND OF THE INVENTION

This invention relates to non-invasive, small-perturbation measurements of macroscopic mechanical properties of organs and blood vessels to evaluate tissue pathology and body function.
Pathological tissue changes are often correlated with changes in density, elasticity and damping. While microscopic mechanical changes are sometimes correlated with ultrasound transmission and reflection properties, many important mechanical changes are manifested most clearly on a large scale at low frequencies. For these, manual palpation remains almost the sole diagnostic tool. Considerable effort has gone into blood pressure measurement methods, but not by analyzing small-perturbation mechanical properties of the pressurized vessel. Intraocular pressure is sensed by causing small eyeball shape perturbations, either by flattening a predetermined area of the sclera against an instrument surface, or by distorting the eyeball with a calibrated puff of air and measuring the deflection of a light beam reflected off the eye. The current invention similarly induces small shape perturbations, but obtains better data with greater patient comfort through a sophisticated use of vibrational excitation and mechanical response measurement and analysis.
Blood pressure measurement methods are commonly invasive or cause temporary occlusion of blood flow. A common measurement involves a catheter inserted into the radial artery and advanced to the aorta. Pulmonary arterial and capillary pressures are measured by the Swan Ganz method, whereby a catheter is advanced via a large vein and through heart valves into the right atrium, through the right ventricle, into the pulmonary trunk and up to the T-branching of right and left pulmonary arteries. Pulmonary arterial pressure is measured through the catheter, while pulmonary capillary pressure is obtained by inflating a balloon at the catheter tip to occlude flow to one lung while measuring the fall in pressure distal to the balloon, approaching capillary pressure. The trauma and risk of these invasive methods is apparent.
Non-invasive occlusive blood pressure methods commonly employ a pressurized cuff surrounding an arm or leg to collapse an underlying artery. The moments of collapse and reinflation, marking the times when blood pressure drops below and rises above cuff pressure, are sensed from blood flow noise (by stethoscope or contact microphone), by ultrasound doppler flow detection or from a sudden change in limb cross-section (sensed by monitoring of pressure or volume in the occluding cuff or a sensing cuff placed distal to the occluding cuff). The result is usually an estimate of systolic and diastolic extremes of pressure. Where cuff pressure pulsations are sensed as average cuff pressure is varied, mean arterial pressure can be estimated. These cuff methods depend on a steady heartbeat and cannot follow irregular beat-to-beat pressure fluctuations.
Recent servo cuff methods overcoming some of the above difficulties include those described by Aaslid and Brubakk, Circulation, Vol. 4, No. 4 (ultrasound doppler monitors brachial artery flow while a servoed cuff maintains fixed, reduced flow) and Yamakoshi et al, "Indirect Measurement of Instantaneous Arterial Blood Pressure in the Human Finger by the Vascular Unloading Technique", IEEE Trans. on Biomedical Eng., Vol. BME-27, No. 3, March 1980 (a similar system optically monitors capillary blood volume in the finger while a servoed cuff maintains a constant optical reading). The former method yields a continuous pressure reading but blocks venous return flow so that monitoring must be interrupted frequently. The finger pressure waveform of the latter method is distorted relative to the important pressure waveform loading the heart and central arteries.
D. K. Shelton and R. M. Olson, "A Nondestructive Technique To Measure Pulmonary Artery Diameter And Its Pulsatile Variations", J. Appl. Physiol., Vol. 33, No. 4, Oct. 1972, used an ultrasound transducer in the esophagus to track canine pulmonary artery diameter.

REFERENCES:
patent: 3836757 (1974-09-01), Nachtigal et al.
patent: 3842663 (1974-10-01), Harting et al.
patent: 3882718 (1975-05-01), Kriebel
patent: 4418573 (1983-12-01), Madigosky et al.
patent: 4646754 (1987-03-01), Scale

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Non-invasive determination of mechanical characteristics in the does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Non-invasive determination of mechanical characteristics in the , we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Non-invasive determination of mechanical characteristics in the will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-1742934

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.