Method for forming an oxide-filled trench in silicon carbide

Fishing – trapping – and vermin destroying

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

437 26, 437 25, 437 24, 437 69, 437940, 437100, 148DIG148, H01L 2176

Patent

active

052702448

ABSTRACT:
A method for forming an oxide-filled trench in silicon carbide includes the steps of amorphizing a portion of a monocrystalline silicon carbide substrate to thereby define an amorphous silicon carbide region in the substrate and then oxidizing the amorphous region to thereby form an oxide-filled trench in the substrate. Because of the enhanced rate of oxidation in the amorphous region as compared to the rate of oxidation of the surrounding monocrystalline silicon carbide regions at relatively low temperatures, the oxide-filled trench is generally defined by the lateral and vertical dimensions of the amorphous silicon carbide region. The amorphizing step includes the steps of masking an area on the face on the monocrystalline silicon carbide substrate to thereby expose a portion of the substrate wherein the amorphous region is to be formed and then directing ions to the face, such that the ions implant into the exposed portion of the substrate and create an amorphous silicon carbide region therein. The implanted ions are preferably selected from the group consisting of silicon, hydrogen, neon, helium, carbon and argon.

REFERENCES:
patent: 3982262 (1976-09-01), Karatsjuba et al.
patent: 4161743 (1979-07-01), Yonezawa et al.
patent: 4532149 (1985-07-01), McHargue
patent: 4757028 (1988-07-01), Kondoh et al.
patent: 4994413 (1991-02-01), Eshita
patent: 5030580 (1991-07-01), Furukawa et al.
patent: 5087576 (1992-02-01), Edmond et al.
Trew, Yan and Mock, "The Potential of Diamond and SiC Electronic Devices for Microwave and Millimeter-Wave Power Applications," Proceedings of the IEEE, vol. 79, No. 5, pp. 598-620, May, 1991.
Bhatnagar and Baliga, "Analysis of Silicon Carbide Power Device Performance", IEEE, pp. 176-180, 1991.
Pan and Steckl, "Reactive Ion Etching of SiC Thin Films by Mixtures of Fluorinated Gases and Oxygen", J. Electrochem. Soc., vol. 137, No. 1, pp. 212-220, Jan. 1990.
Davis, "Epitaxial Growth and Doping of and Device Development in Monocrystalline .beta.-SiC Semiconductor Thin Films," Thin Solid Films, vol. 181, pp. 1-15, Dec. 1989.
Shenai, Scott and Baliga, "Optimum Semiconductors for High-Power Electronics", IEEE Transactions on Electron Devices, vol. 36, No. 9, pp. 1811-1823, Sep. 1989.
Bumgarner, Kong, and Kim, et al., "Monocrystalline .beta.-SiC Semiconductor Thin Films: Epitaxial Growth, Doping, and FET Device Development," 1988 Proceedings of the 38th Electronics Components Conf., pp. 342-349, 1988.
Daimon, Yamanaka, Shinohara, Sakuma, Misawa, Endo and Yoshida, "Operation of Schottky-Barrier Field Effect Transistors of 3C-SiC up to 400.degree. C.", Appl. Phys. Lett., vol. 51, pp. 2106-2108, Dec. 1987.
Kelner, Binari, Sleger and Kong, ".beta.-SiC MESFET's and Buried Gate JFET's", IEEE Electron Device Letters, vol. EDL-8, No. 9, pp. 428-430, Sep. 1987.
Kong, Palmour, Glass and Davis, "Temperature Dependence of the Current-Voltage Characteristics of Metal-Semiconductor . . . Via Chemical Vapor Deposition", Appl. Phys. Lett., vol. 51, pp. 442-444, Aug. 1987.
Kelner, Binari, Sleger and Kong, ".beta.-SiC MESFETs", Mater. Res. Soc. Symp. Proc., vol. 97, pp. 227-232, Sep. 1987.
Edmond, Palmour, and Davis, "Chemical Etching of Ion Implanted Amorphous Silicon Carbide," J. Electrochem. Soc.: Solid-State Science and Technology, pp. 650-652, Mar. 1986.
Sugiura, Lu, Cadien and Steckl, "Reactive Etching of SiC Thin Films Using Fluorinated Gases", J. Vac. Sci. Technology. B 4 (1), pp. 349-355, Jan.-Feb. 1986.
Chang, Fang, Huong, and Wu, "Noval Passivation Dielectrics-The Boron- or Phosphorus-Doped Hydrogenated Amorphous Silicon Carbide Films", J. Electrochem. Soc.: Solid State Science and Technology, pp. 418-422, Feb. 1985.
McHargue, Lewis, Williams and Appleton, "The Reactivity of Ion-Implanted SiC", Materials Science and Engineering, vol. 69, pp. 391-395, 1985.
Palmour, Davis, Astell-Burt and Blackborow, "Effects of Cathode Materials and Gas Species on the Surface Characteristics of Dry Etched Monocrystalline Beta-SiC Thin Films", Silicon Carbide, pp. 491-550.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for forming an oxide-filled trench in silicon carbide does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for forming an oxide-filled trench in silicon carbide, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for forming an oxide-filled trench in silicon carbide will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-1705064

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.