Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Peptide containing doai
Patent
1996-06-28
1998-11-10
Huff, Sheela
Drug, bio-affecting and body treating compositions
Designated organic active ingredient containing
Peptide containing doai
514 2, 514 3, 530324, 530303, 530308, 435366, 435371, 935 52, 935 55, 935 66, 935 70, 935 71, A61K 3800
Patent
active
058344284
ABSTRACT:
Glucagon-like peptide 2, a product of glucagon gene expression, and analogs of glucagon-like peptide 2, have been identified as gastrointestinal tissue growth factors. Their effects on the growth of small bowel and pancreatic islets are described. Their formulation as a pharmaceutical, and their therapeutic use in treating disorders of the bowel, are described.
REFERENCES:
Barragan, J.M.; Rodriguez, R.E.; and Blazquez, E. Changes in arterial blood pressure and heart rate induced by glucagon-like peptide-1-(7-36) amide in rats. American Journal of Physiology. 266 (3 Pt 1), pE459-66, Mar. 1994.
Bloom, S.R. Gut Hormones in adaption. Gut. 28, S1, pp. 31-35, 1987.
Brubaker, Patricia L. Regulation of Intestinal Proglucagon-Derived Peptide Secretion by Intestinal Regulatory Peptides. Endocrinology. vol. 128, No. 6, pp. 3175-3182, 1991.
Buhl, Thora; Thim, Lars; Kofod, Hans; Orskov, Catherine; Harling, Henrik; and Holst, Jens. J. Naturally Occurring Products of Proglucagon 111-160 in the Porcine and Human Small Intestine. The Journal of Biology Chemistry. vol. 263, No. 18, pp. 8621-8624, Issue of Jun. 25, 1988.
Calvo, J.C.; Yusta, B; Mora, F; and Blazquez, E. Structural characterization by affinity cross-linking of glucagon-like peptide-1 (7-36) amide receptor in rat brain. J. Neurochem. 64(1), pp. 299-306, Jan. 1995.
Cheeseman, Chris I.; and Raymand Tsang. The effect of gastric inhibitory polypeptide and glucagon like peptides on intestinal basolateral membrane hexose transport. The American Physiological Society. APSracts 3:0071G, Apr. 1996.
Drucker. Pancreas. 1990, 5(4):484.
Ehrlich, Peter; Tucker, Devin; Asa, Sylvia L.; Brubacker, Patricia L.; and Drucker, Daniel J. Inhibition of pancreatic proglucagon gene expression in mice bearing subcutaneous endocrine tumors. American Journal of Physiology. pp. E662-E671, 1994.
George, S.K.; Uttenthal, L.O.; Ghiglione, M.; and Bloom, S.R. Molecular forms of glucagon-like peptides in man. FEBS Letters. vol. 192, No. 2, pp. 275-278, Nov. 1985.
Hoosein, Naseema M.; and Gurd, Ruth S. Human glucan-like peptides 1 and 2 activate rat brain adenylate cyclase. FEBS Letters. vol 178, No. 1, pp. 83-86, Dec. 1984.
Irwin, David M.; and Wong, Jaffe. Trout and Chicken Proglucagon: Alternative Splicing Generates mRNA Transcripts Encoding Glucagon-Like Peptide 2. Molecular Endocrinology. 9:267-277, 1995.
Lee, Ying C.; Asa, Sylvia L.; and Drucker, Daniel J. Glucagon Gene 5"-Flanking Sequences Direct Expression of Simian Virus 40 Large T Antigen to the Intestine, Producing Carcimona of the Large Bowel in Transgenic Mice. The Journal of Biological Chemistry. vol. 267, No. 15, pp. 10706-10708, May 25, 1992.
Lund, P. Kay; Hoyt, Eileen; Simmons, James G.; and Ulshen, Martin H. Regulation of Intestinal Glucagon Gene Expression during Adaptive Growth of Small Intestine. Digestion. 54:371-373, 1993.
Mojsov, Svetlana; Heinrich, Richard; Wilson, Ira B.; Ravazzola, Mariella; Orci, Lelio; and Habener, Joel F. Preproglucagon Gene Expression in Pancreas and Intestine Diversifies at the Level of Post-translational Processing. The Journal of Biological Chemistry. vol. 261, No. 25, pp. 11880-11889, Sep. 5, 1986.
Mommsen, Thomas P.; Andrews, P.C.; and Plisetskaya, Erika M. Glucagon-like peptides activate hepatic gluconeogenesis. FEBS Letters. vol. 219, No. 1, pp. 227-232, Jul. 1987.
Nishi and Steiner, Mol. Endocrinol., 1990, 4:1192-8.
Orskov, C.; Buhl, T.; Rabenhoj, L.; Kofod, H.; and Holst, J.J.. Carboxpeptidase-B-like processing of the C-terminus of glucagon-like peptide-2 in pig and human small intestine. FEBS Letters. 247(2), pp. 193-196, Apr. 24, 1989.
Orskov, C.; Holst, J.J.; Pouisen, S. Seier; and Kirkegaard, P. Pancreatic and intestinal processing of proglucagon in man. Diabetologia. 30:874-881, 1987.
Orskov, C; and Holst, J.J. Radio-immunassays for glucagon-like peptides 1 and 2 (GLP-1 and GLP-2). Scand. J. Clin. Lab. Invest. 47(2), pp. 165-174, Apr. 1987.
Orskov, Catherine; Holst, Jens J.; Knuhtsen, Svend; Baldissera, Furio G.A.; Poulsen, Steen S.; and Nielsen, O. Vagn. Glucagon-Like Peptides GLP-1 and GLP-2, Predicted Products of the Glucagon Gene, Are Secreted Separately from Pig Small Intestine but Not Pancreas. Endocrinology. vol. 119, No. 4, pp. 1467-1475, 1986.
Ruiz-Grand, C.; Pintado, J.; Alarcon, C.; Castilla, C.; Valverde, I; Lopez-Novoa, J.M. Renal catabolism of human glucagon-like peptides 1 and 2. Can. J. Physiol. Pharmacol. 68 (12), pp. 1568-1573, Dec. 1990.
Shennan, K.I.J.; and Docherty, K. Proglucagon expression, posttranslational processing and secretion in SV40-transformed islet cells. Molecular and Cellular Endocrinology. 67(1989), pp. 93-99.
Watanabe, Nobuaki; Matsuyama, Tatsuo; Namba, Mitsuyoshi; Miyagawa, Jun-ichiro; Itoh, Hidehiko; Komatsu, Ryoya; Kono, Norio; and Tarui, Seiichiro. Trophic Effect of Glucagon-(1-21)-Peptide on the Isolated Rat Ileal Mucosal Cells. Biochemical and Biophysical Research Communications. vol. 152, No. 3, pp. 1038-1044, May 16, 1988.
1149336 Ontario Inc.
Huff Sheela
LandOfFree
Glucagon-like peptide-2 and its therapeutic use does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Glucagon-like peptide-2 and its therapeutic use, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Glucagon-like peptide-2 and its therapeutic use will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-1516738