Method for improved selectivity in photo-activation and detectio

Surgery – Miscellaneous – Methods

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

600300, 600476, H61B 1900

Patent

active

058329315

ABSTRACT:
A method for the imaging of a particular volume of plant or animal tissue, wherein the plant or animal tissue contains at least one photo-active molecular agent. The method includes the steps of treating the particular volume of the plant or animal tissue with light sufficient to promote a simultaneous two-photon excitation of the photo-active molecular agent contained in the particular volume of the plant or animal tissue, photo-activating at least one of the at least one photo-active molecular agent in the particular volume of the plant or animal tissue, thereby producing at least one photo-activated molecular agent, wherein the at least one photo-activated molecular agent emits energy, detecting the energy emitted by the at least one photo-activated molecular agent, and producing a detected energy signal which is characteristic of the particular volume of plant or animal tissue. The present invention is also a method for the imaging of a particular volume of material, wherein the material contains at least one photo-active molecular agent.

REFERENCES:
patent: 4822335 (1989-04-01), Kawai et al.
patent: 4973848 (1990-11-01), Kolobanov et al.
patent: 5034613 (1991-07-01), Denk et al.
patent: 5231984 (1993-08-01), Santana-Blank
patent: 5483338 (1996-01-01), Wachter et al.
patent: 5558666 (1996-09-01), Dewey et al.
patent: 5586981 (1996-12-01), Hu
Vo-Dinh, et al., "In Vivo Cancer Diagnosis of the Esophague Using Differential Normalized Fluorescence (DNF) Indices," Lasers in Surgery and Medicine, 16: 41-47 (1995).
Panjehpour, et al., "Spectroscopic Diagnosis of Esophageal Cancer: New Classification Model, Improved Measurement System," Gastrointestinal Endoscopy, 41(6): 577-581 (1995).
Wirth, et al., "Two-Photon Excited Molecular Fluorescence in Optically Dense Media," Analytical Chemistry, 49(13): 2054-2057 (1977).
Wirth, et al., "Very High Detectability in Two-Photon Spectroscopy," Analytical Chemistry, 62(9): 973-976 (1990).
Denk, et al., Two-Photon Molecular Excitation in Laser-Scanning Microscopy, in Handbook of Biological Confocal Microscopy, 2d ed., Plenum Press, New York (1995), 445-458.
Freeman, et al., "Second Harmonic Detection of Sinusoidally Modulated Two-Photon Excited Fluorescence," Analytical Chemistry, 62 (20): 2216-2219.
Fisher, et al., "Second Harmonic Detection of Spatially Filtered Two-Photon Excited Flurorescence," Analytical Chemistry, 65(5): 631-635 (1993).
Hammer, D.X., et al., (1996) Experimental investigation of ultrashort pulse laser-induced breakdown thresholds in aqueous media. Ieee J. Quant. Electron. 3 2, 670-678.
Fisher, A.M.R., et al., (1995) Clinical and preclinical photodynamic therapy. Lasers Surg. Med.. 1 7, 2-31.
Draumer, N.H., et al., (1997) Femtosecond dynamics of excited-state
Wilson, B.C. And M.S. Patterson, (1986) The physics of photodynamic therapy. Phys. Med. Biol. 3 1, 327-360.
Niemz, M.H., (1995) Theshold dependence of laser-induced optical breakdown on pulse duration. Appl. Phys. Lett. 6 6, 1181-1183.
Cheong, W-F., et al., (1990) A review of the optical properties of biological tissues, IEEE J. Quant. Electron. 2 6, 2166-2185.
Dougherty, T.J., et al., (1975) Photoradiation therapy II. Cure of animal tumors with hematoporphyrin and light, j. Natl. Cancer Inst. 5 5, 115-120.
Gomer, C.J., et al., (1989) Properties and applications of photodynamic therapy. Rad. Res. 1 2 0, 1-18.
Kessel, D., et al., (1991) Photophysical and photobiological properties of diporphyrin ethers. Photochem. Photobiol. 5 3,469-474.
Dolphin, D., (1994) 1993 Syntex award lecture, photomedicine and photodynamic therapy. Can. J. Chem. 7 2, 1005-1013.
Katsumi, T.A., et al., (1996) Photodynamic therapy with a diode laser for implanted fibrosarcoma in mice Employing mono-L-aspartyl chlorin E6. Photochem. Photobiol. 6 4, 671-675.
Gopert-Mayer, M., (1931) Elementary process with two quantum jumps. Ann. Physik 9, 273-294.
Kaiser, W. and C.G.B. Garrett, (1961) Two photon excitation in CaF.sub.2 :Eu.sup.2+ . Phys. Rev. Lett. 7, 299-231.
Monson, P.R. and W.M. McClain, (1970) Polarization dependence of the two-photon absorption of tumbling molecules with application of liquid 1-chloronaphthalene and benzene. J. Chem. Phys. 5 3, 29-37.
Hermann, J.P. And J. Ducuing, (1972) Dispersion of the two-photon cross section in rhodamine dyes. Opt. Comm. 6, 101-105.
Denk, W., et al., (1976) Two-photon molecular excitation in laser-scanning and microscopy. In Handbook of Biological Confocal microscopy, 2d Ed., (Ed. A.J.B. Pawley) 445-458. Plenum Press, New York.
Swofford, R.L. And W.M. McClain, (1975) The effect of spatial and temporal laser beam characteristics on two-photon absorption. Chem Phys. Lett. 3 4, 455-459.
Georges, J., et al., (1996) Limitations arising from optical saturation in fluorescence and thermal lens apec-Trometries using pulsed laser excitation: applicaiton to the . . . Appl. Spectrosc. 5 0, 1505-1511.
Andreoni, A., et al., (1982) Two-step laser activatoin of hematoporphyrin derivative. Chem. Phys. Lett. 8 8 37-39.
Shea, C.R., et al., (1990) Mechanistic investigation of doxycyckine photosensitization by picosecond-pulsed and continuous wave laser irradiation of cells in culture. J. Biol. Chem. 2 6 5, 5977-5982.
Inaba, H., et al., (1985) Nd:YAG laser-induced hematoporphyrin visible fluorescence and two-photon-excited photochemical effect on malignant tumor cells. J. Opt. Soc. Am. A: Opt. Inage Science 2, P72 (mtg abstr.).
Mashiko, S., et al., (1986) Two-photon excited visible fluorescence of hematoporphyrin and phiophorbide a and in vitro experiments of the photodynamic . . . J. Opt. Soc. Am. B: Opt. Phys. 3, P72-P73 (mtg abstr).
Yamashita, Y, et al., (1991) Photodynamic therapy using pheophorbide-a and Q-switched Nd:YAG laser on implanted human hepatocellular carcinoma. Gast. Jap. 2 6, 623-627.
Fugishima, I., et al., (1991) Photodynamic therapy using phophorbide a and Nd:YAG laser. Neurol. Med. Chir. (Tokyo) 3 1, 257-263.
Mashiko, S., et al., (1985) Basic study on photochemical effect of pheophorbide-a irradiated by Nd:YAG laser light. Nippon Laser Igakukaishi 6, 113-116.
Steil, H., et al., (1993) Photophysical properties of the photosensitizer phophorbide a studied at high photon flux densities. J. Photochem. Photobiol. B: Biology 1 7, 181-186.
Bodaness, R.S. And D.S. King (1985) The two-photon induced fluorescence of the tumor localizing photo-Sensitizer hematoporphyrin derivative via 1064 nm . . . Biochem. Biophys. Res. Comm. 1 2 6, 346-351.
Bodaness, R.S., et al., (1986) The two-photon laser-induced fluorescence of the tumor-localizing photosensitive hematoporphyrin derivative. J. Biol. Chem. 2 6 1, 12098-12101.
Lenz, P., (1995) In vivo excitation of photosensitizers by infrared light. Photochem. Photobiol. 6 2, 333-338.
Patrice, T., et al., (1983) Neodymium-yttrium aluminum garnet laser destruction of nonsensitized and hemato-Porphyrin derivative-sensitized tumors. Canc. Res. 4 3, 2876-2879.
Marchesini, R., et al., (1986) A study on the possible involvement of nonlinear mechanism of light absorption by HpD with Nd:YAG laser. Lasers Surg. Med. 6, 323-327.
Oh, D.H., et al., (1997) Two-photon excitation of 4'-hydroxymethyl-4,5',8-trimethylpsoralen. Photochem. Photobiol. 6 5, 91-95.
Prasad, P.N. And G.S. He, (1996) Multiphoton resonant nonlinear-optical processes in organic molecules. ACS Symposium Series 6 2 8, 225-236.
Dagani, R., (1996) Two photons shine in 3-D data storage. Chem Eng. News, Sep. 23, 1996, 68-70.
Lytle, F.E., (1981) Laser fundamentals. In Lasers in Chemical Analysis (Ed.: G.M. Hieftje, et al.) 5-6. The Humana Press, New Jersey.
Song, P-S. And K.J., Tapley, Jr., (1979) Photochemistry and photobiology of psoralens. Photochem. Photobiol. 2 9, 1177,1197.
Spence, D.E., et al., (1991) 60-fsec pulse generation from a self-mode-locked Ti:sapphire laser. Opt. Lett. 1 6, 42-44.
Cimino, G.D., et al., (1985) Psoralens as photoactive probes of nucleic acid structure and function: organic chemistry, photochemistry, and biochemistry, Ann. Rev. Biochem. 5 4, 1151-1193.
Fisher, W.G., et al., (1997) Two-photon spectroscopy and photochemistry of tris(2,2'-bipyridin

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for improved selectivity in photo-activation and detectio does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for improved selectivity in photo-activation and detectio, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for improved selectivity in photo-activation and detectio will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-1507316

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.