Multi-antenna gas receiver for seismic survey vessels

Communications: directive radio wave systems and devices (e.g. – Directive – Including a satellite

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

342357, H04B 7185

Patent

active

048090050

ABSTRACT:
Method and apparatus are disclosed for accurately determining position from GPS satellites and received on a ship using observations of C/A code group delay, L1 band center frequency carrier phase, L1 band 5.115 MHz implicit carrier phase, and L2 band 5.115 MHz implicit carrier phase. A precise measurement of the range to each satellite is made based upon the L1 center frequency carrier phase. A correction for ionospheric effects is determined by simultaneous observation of the group delays of the wide bandwidth P code modulations in both the L1 and L2 bands. These group delays are determined by measuring the phases of carrier waves implicit in the spread-spectrum signals received in both bands. These carriers are reconstructed from both the L1 and L2 band signals from each satellite without using knowledge of the P code. The unknown biases in the L1 center frequency carrier phase range measurements are determined from simultaneous, pseudorange measurements, with time averaging. The instantaneous position of the antenna receiving these signals, and therefore the ship, may then be determined from the ranges so determined, with both the bias and the ionospheric effects having been eliminated. Additional antennas are positioned on the ship and a seismic streamer towed by the ship to reject false signals, compensate for blockage of signals by the ship's structure, and determine the position of sensors in the streamer.

REFERENCES:
patent: 3860921 (1975-01-01), Wood
patent: 3900873 (1975-08-01), Bouvier et al.
patent: 3906204 (1975-09-01), Rigdon et al.
patent: 3943514 (1976-03-01), Afendykiw et al.
patent: 4045796 (1977-08-01), Kline
patent: 4054879 (1977-10-01), Wright et al.
patent: 4114155 (1978-09-01), Raab
patent: 4170776 (1979-10-01), McDoran
patent: 4232389 (1980-11-01), Loiler
patent: 4368469 (1983-01-01), Ott et al.
patent: 4443799 (1984-04-01), Rubin
patent: 4445118 (1984-04-01), Taylor et al.
patent: 4455651 (1984-06-01), Baran
patent: 4463357 (1984-07-01), MacDoran
patent: 4468793 (1984-08-01), Johnson et al.
patent: 4484335 (1984-11-01), Mosley et al.
patent: 4578678 (1986-03-01), Hurd
patent: 4601005 (1986-07-01), Kilvington
patent: 4613864 (1986-09-01), Hofgen
patent: 4613977 (1986-09-01), Wong et al.
patent: 4652884 (1987-03-01), Starker
patent: 4656642 (1987-04-01), Apostolos et al.
patent: 4672382 (1987-06-01), Fukuhara et al.
Charles C. Counselman III, "Radio Astrometry", Annual Reviews of Astrometry and Astrophysics, vol. 14, 1976, pp. 197-214.
Counselman, Shapiro, Greenspan and Cox, "Backpack VLBI Terminal with Subcentimeter Capability", NASA Conference Publication 2115--Radio Interferometry Techniques for Geodesy, 1980, pp. 409-414.
Counselman, Gourevitch, King, Herring, Shapiro, Greenspan, Rogers, Whitney and Cappallo, "Accuracy of Baseline Determinations by MITES Assessed by Comparison with Tapes, Theodolite, and Geodimeter Measurements", EOS, The Transactions of the American Geophysical Union, vol. 62, Apr. 28, 1981, p. 260.
Counselman and Shapiro, "Miniature Interferometer Terminals for Earth Surveying", Bulletin Geodesique, vol. 53, 1979, pp. 139-163.
W. O. Henry, "Some Developments in Loran", Journal of Geophysical Research, vol. 65, Feb. 1960, pp. 506-513.
Pierce, "Omega", IEEE Transactions on Aerospace and Electronics Systems, Vol. AES-1, No. 3, Dec. 1965, p. 206-215.
J. J. Spilker, Jr., "GPS Signal Structure and Performance Characteristics", Navigations, vol. 25, No. 2, 1978, pp. 121-146.
Bossler, Goad and Bender, "Using the Global Positioning Systems (GPS) for Geodetic Positioning", Bulletin Geodesique, vol. 54, 1980, pp. 553-563.
Alan E. E. Rogers, "Broad-Band Passive 90.degree. RC Hybrid with Low Component Sensivity for Use in the Video Range of Frequencies", Proceedings of the IEEE, vol. 59, 1971, pp. 1617-1618.
M. L. Meeks, Editor, Methods of Experimental Physics, vol. 12, (Astrophysics), Part C (Radio Observations), 1976, pp. v-ix and as follows: Chapter 5.3: J. M. Moran, "Very Long Baseline Interferometer Systems", pp. 174-197, Chapter 5.5: J. M. Moran, "Very Long Baseline Interferometric Observations and Data Reduction", pp. 228-260, Chapter 5.6: I. I. Shapiro, "Estimation of Astrometric and Geodetic Parameters", pp. 261-276.
Counselman and Gourevitch, "Miniature Interferometer Terminals for Earth Surveying: Ambiguity and Multipath with Global Positioning Systems", IEEE Transactions on Geoscience and Remote Sensing, vol. GE-19, No. 4, Oct. 1981, pp. 244-252.
Counselman and Shapiro, "Miniature Interferometer Terminals for Earth Surveying", Proceedings of the 9th GEOP Conference, An International Symposium on the Applications of Geodesy to Geodynamics, Oct. 2-5, 1978, Dept. of Geodetic Science Report No. 280, The Ohio State University, 1978, pp. 65-85.
Peter F. MacDoran, "Satellite Emission Radio Interferometric Earth Surveying Series-GPS Geodetic System", Bulletin Geodesique, vol. 53, 1979, pp. 117-138.
Peter F. MacDoran, "Series--Satellite Emission Radio Interferometric Earth Surveying", Third Annual NASA Geodynamics Program Review, Crustal Dynamics Project, Geodynamics Research, Jan. 26-29, 1981, Goddard Space Flight Center, p. 76 (plus) Three View Graph Figures entitled: Satellite L-Band Ionospheric Calibration (SLIC); Series One-Way Range Receiver Simplified Block Diagram; and Series Receiver Range Synthesis.
Peter F. MacDoran, "Satellite Emission Range Inferred Earth Surveying, Series--GPS", JPL, presented at Defense Mapping Agency Meeting, Feb. 9, 1981, 13 pp.
MacDoran, Spitzmesser and Buennagel, "Series: Satellite Emission Range Inferred Earth Surveying", Presented at the Third International Geodetic Symposium on Satellite Doppler Positioning, Las Cruces, N.M., Feb. 1982, 23 pp.
MacDoran, Spitzmesser and Buennagel, "Series: Satellite Emission Range Inferred Earth Surveying", Proceedings of the 3rd International Geodetic Symposium on Satellite Doppler Positioning, vol. 2, 1982, pp. 1143-1164.
"Operating Manual STI Model 5010 GPS Receiver", Stanford Telecommunications Inc., STI-O & M-8707B, Feb. 25, 1980, selected pages as follows: Title page, i-iv, 1-1, 1-3, 2-1 through 2-5, 3-1 through 3-3, 6-1 through 6-9.
"Pioneer Venus Project, Differenced Long-Baseline Interferometry Experiment, Design Review Document", NASA Ames Research Center, Moffett Field, Calif., Jul. 1, 1977, 23 pp.
C. Goad, "Visit with P. MacDoran, Aug. 6, 1981", Memo to Capt. Bossler, sent to Dr. Counselman, Aug. 12, 1981, 3 pp.
Peter F. MacDoran, Statements made at the 3rd International Geodetic Symposium on Satellite Doppler Positioning, Feb. 1982.
A. E. E. Rogers, C. A. Knight, H. F. Hinteregger, A. R. Whitney, C. C. Counselman III, I. I. Shapiro, S. A. Gourevitch and T. A. Clark, "Geodesy by Radio Interferometry: Determination of a 1.24-km Base Line Vector with 5-mm Repeatability", J. Geophysics. Res., vol. 83, pp. 325-334, 1978.
W. E. Carter, A. E. E. Rogers, C. C. Counselman III, and I. I. Shapiro, "Comparison of Geodetic and Radio Interferometric Measurements of the Haystack-Westford Base Line Vector", J. Geophysics. Res., vol. 85, pp. 2685-2687, 1980.
R. A. Preston, R. Ergas, H. F. Hinteregger, C. A. Knight, D. S. Robertson, I. I. Shapiro, A. R. Whitney, A. E. E. Rogers, and T. A. Clark, "Interferometric Observations of an Artificial Satellite", Science, vol. 178, pp. 407-409, 1972.
C. C. Counselman, III and I. I. Shapiro, "Miniature Interferometer Terminals for Earth Surveying", Proc. of the 2nd Int.'l Geodetic Symposium of Satellite Doppler Positioning, vol. 2, pp. 1237-1286, 1979, (avail. from Appl. Res. Lab., University of Texas, Austin, Tex. 78758).
R. J. Anderle, "Application of the NAVSTAR GPS Geodetic Receiver to Geodsey and Geophysics", Naval Surface Weapons Center Tech. Rept., No. 80-282, 27, pp., 1980.
J. J. Spilker, Jr., Digital Communications by Satellite, Prentice-Hall, Englewood Cliffs, N.J., pp. 302-303, 1977.
P. L. Bender, "A Proposal to the National Aeronautics and Space Administration for the Support of GPS Satellite Orbit Determination Using the Reconstructed Carrier Phase Method for Tracking", Quantum Physics Division, National Bureau of Standar

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Multi-antenna gas receiver for seismic survey vessels does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Multi-antenna gas receiver for seismic survey vessels, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Multi-antenna gas receiver for seismic survey vessels will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-1371648

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.