Laser robot with approach time from origin to a starting positio

Electric heating – Metal heating – By arc

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

2191216, 21912167, 36447408, B23K 2600

Patent

active

054669090

DESCRIPTION:

BRIEF SUMMARY
TECHNICAL FIELD

The present invention relates to a laser machining method employing a multi-articulated laser:equipped robot having a plurality of axes of motion (an axis about which one of the movable elements of an industrial robot has a degree of freedom of motion is referred to as an axis of motion.), and a multi-articulated laser robot provided with a control apparatus for carrying out the method. More particularly, it relates to a laser-beam machining method that feeds a laser-beam projecting unit, attached to the extremity of a laser robot, by the controlling operation of an additional motion- axis mechanism, incorporating therein two feed motors, along a narrow machining locus of a small diameter to thereby efficiently machine a workpiece with a laser beam projected through a laser beam projecting nozzle on the laser beam projecting unit, and a multi-articulated laser robot suitable for carrying out the laser-beam machining method.


BACKGROUND ART

A laser robot, particularly a well-known multi-articulated laser robot having freedom of motion about six axes, is provided with a robot wrist, i.e., one of the movable elements of the robot, attached to the extremity thereof. The robot is further provided with an additional-axis mechanism including two drive motors and moves a laser beam projecting unit along a predetermined path, i.e., a feed path, in a biaxial coordinate plane using the additional motion-axis mechanism. Such a laser robot capable of forming a precision small hole in a workpiece by feeding the laser beam projecting unit along a circular feed path having a small diameter has been proposed and put into practical use for laser-beam machining.
A multi-articulated laser robot provided with the above-mentioned additional motion-axis mechanism has a robot unit as shown in FIG. 1, and the operation of the robot unit is controlled by a well-known robot controller for implementing the desired laser-beam machining.
The robot unit 1 has a robot base 2, a robot body 3 set upright on the robot base 2, a turning robot body 4 turnably joined to the upper part of the robot body 3, a robot upper arm 5 pivotally joined for rotating about a horizontal axis to one end of the turning robot body 4, a robot forearm 6 pivotally joined, for rotating about a horizontal axis relative to the robot upper arm 5, to the extremity of the robot upper arm 5, a robot wrist 7 having three degrees of freedom of motion, joined to the extremity of the robot forearm 6 and capable of rotatinging about three axes perpendicular to one another in a three-dimensional space, and an additional motion-axis mechanism 8 attached to the robot wrist 7 and holding a laser-beam machining head 9 including a laser beam projecting device that projects a laser beam for laser-beam machining.
The additional motion-axis mechanism 8 is provided with two built-in drive motors, such as servomotors, not shown, and controls the laser-beam projecting nozzle 9a of the laser-beam machining head 9 for movement, for example, along a desired path in an orthogonal biaxial coordinate plane according to commands provided by the robot controller so as to carry out laser-beam machining of a workpiece by the use of a laser beam for cutting, boring and such.
The additional motion-axis mechanism 8 is mainly used as a mechanism specially for forming small holes with the laser-beam machining head 9. The additional motion-axis mechanism 8 holds the laser beam projecting nozzle 9a at a predetermined position of origin while the movable elements of the six-axis system (the revolving robot body 4, the robot upper arm 5, the robot forearm 6 and the robot wrist 7) of the robot unit 1 are in operation, and the two drive motors of the additional motion-axis mechanism 8 are actuated after the laser beam projecting nozzle 9a of the laser-beam machining head 9 has been positioned by the robot unit 1 at the center of a small hole to be formed so as to move the laser beam projecting nozzle 9a of the laser-beam machining head 9 along a machining locus, such as a circular locus,

REFERENCES:
patent: 4169976 (1979-10-01), Cirri
patent: 5293024 (1994-03-01), Sugahara et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Laser robot with approach time from origin to a starting positio does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Laser robot with approach time from origin to a starting positio, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Laser robot with approach time from origin to a starting positio will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-1222780

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.