Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Having -c- – wherein x is chalcogen – bonded directly to...
Patent
1995-06-07
1998-07-07
Owens, Amelia
Drug, bio-affecting and body treating compositions
Designated organic active ingredient containing
Having -c-, wherein x is chalcogen, bonded directly to...
514410, 514411, 514468, 549298, 549299, 5482624, 548422, 548431, 548961, A61K 3141, C07D30777
Patent
active
057769621
ABSTRACT:
Substituted lactone compounds are useful in the treatment of precancerous lesions and neoplasms.
REFERENCES:
patent: 3031450 (1962-04-01), Fischer et al.
patent: 3161654 (1964-12-01), Shen
patent: 3322755 (1967-05-01), Roch et al.
patent: 3517005 (1970-06-01), Cronin et al.
patent: 3594480 (1971-07-01), Cronin et al.
patent: 3647858 (1972-03-01), Hinkley et al.
patent: 3654349 (1972-04-01), Shen et al.
patent: 3780040 (1973-12-01), Schnettler et al.
patent: 3812127 (1974-05-01), Cronin et al.
patent: 3819631 (1974-06-01), Broughton et al.
patent: 3920636 (1975-11-01), Takahasi et al.
patent: 4001237 (1977-01-01), Partyka et al.
patent: 4001238 (1977-01-01), Partyka et al.
patent: 4039544 (1977-08-01), Broughton et al.
patent: 4060615 (1977-11-01), Matier et al.
patent: 4079057 (1978-03-01), Juby et al.
patent: 4098788 (1978-07-01), Crenshaw et al.
patent: 4101548 (1978-07-01), Crenshaw et al.
patent: 4102885 (1978-07-01), Crenshaw et al.
patent: 4138561 (1979-02-01), Crenshaw et al.
patent: 4146718 (1979-03-01), Jenks et al.
patent: 4161595 (1979-07-01), Kaplan et al.
patent: 4171363 (1979-10-01), Crenshaw et al.
patent: 4208521 (1980-06-01), Crenshaw et al.
patent: 4209623 (1980-06-01), Juby
patent: 4423075 (1983-12-01), Dvornik et al.
patent: 4460590 (1984-07-01), Moller
patent: 4460591 (1984-07-01), DeGraw et al.
patent: 4885301 (1989-12-01), Coates
patent: 5030646 (1991-07-01), Malen et al.
patent: 5147875 (1992-09-01), Coates et al.
patent: 5254571 (1993-10-01), Coates et al.
patent: 5401774 (1995-03-01), Pamukcu et al.
Rosenmund, P. and Sadri, E., "Synthesen eserinahnlicher Verbindungen, III; Neue an N-1 und N-8 substituierte Derivate des Desoxyeserolins sowie eine neue Synthese des Eserthols," Liebigs Ann. Chem., pp. 927-943 (1979). (German Language--No Translation Available).
Waddell, W.R. et al., Am. J. Surgery, vol. 157, pp. 175-179 (1989).
Gonzaga, R.A.F. et al., The Lancet, Mar. 30, 1985, p. 751.
Waddell, W.R. et al., J. Surg. Oncology, vol. 24, pp. 83-87 (1993).
Gilman, S.C. et al., Nonsteroidal Anti-inflammatory Drugs in Cancer Therapy, (circa 1985) p. 157.
Brogden, R.N. et al., Drugs, vol. 16, pp. 97-114 (1978).
Hucker, H.B. et al., Drug Metabolism & Disposition, vol. 1, No. 6, pp. 721-736 (1973).
Shen, T.Y. et al., Chemical and Biological Studies on Indomethacin, Sulindac and Their Analogs, pp. 107-178 (circa 1975).
Duggan, D.E. et al., Clin. Pharm. & Therapeutics, vol. 21, No. 3, pp. 326-335 (1976).
Duggan, D.E. et al., J. Pharm. & Exper. Therap., vol. 201, No. 1, pp. 8-13 (1977).
Glavan, G.B. et al., Toxicology and Applied Pharmacology, vol. 83, pp. 386-389 (1986).
Moorghen, M. et al., Journal of Pathology, vol. 156, pp. 341-347 (1988).
Moorghen, M. et al., Acta Histochemica, Suppl.-Band XXIX, S. 195-199 (1990).
Bjarnason et al., Gastroenterology, vol. 94, No. 4, pp. 1070-1074 (1988).
Badrieh, Y., et al., Chem. Ber., vol. 125, pp. 667-674 (1992).
Silvola, J. et al., Effects of Nonsteroidal anti-inflammatory drugs on rat gastric mucosal phosphodiesterase activity, Agents and Actions, vol. 12.4, pp. 516-520 (1982).
Curtis-Prior, P.B. et al., Cyclic Nucleotide Phosphodiesterase Activity of Human Normal and Carcinomatous Lung Tissue, The Lancet, pp. 1225-1225 Dec. 4, 1976.
Pepin, P. et al., Effects of Sulindac and Oltipraz on the tumorigenicity of 4-(methylnitrosamino)1-(3-pyridyl)-1-Butanone in A/J mouse lung, Carcinogenesis, vol. 13, No. 3, pp. 341-348 (1992).
Nicholson, C.D. et al. Differential modulation of tissue function and therapeutic potential of selective inhibitors of cyclic nucleotide phosphodiesterase isoenzymes, Trends Pharmacol. Sci. (TiPS), vol. 12, pp. 19-27 (1991).
Ahn, H.S. et al., Effects of Selective Inhibitors on Cyclic Nucleotide Phosphodiesterases of Rabbit Aorta, Biochemical Pharmacology, vol. 38, No. 19, pp. 3331-3339 (1989).
Luginer, C. et al., Selective Inhibition of Cyclic Nucleotide Phosphodiesterases of Human, Bovine and Rat Aorta, Biochem. Pharmacology, vol. 35, No. 10, pp. 1743-1751 (1986).
Turner, N. c. et al., Relaxation of guinea-pig trachea by cyclic AMP phosphodiesterase and their enhancement by sodium mitroprusside, Br. J. Pharmacol. vol. III, pp. 1047-1052 (1994).
Weishaar, R.E. et al., Multiple Molecular Forms of Cyclic Nucleotide Phosphodiesterase in Cardiac and Smooth Muscle and In Platelets, Biochem, Pharmacology, vol.35, No. 5, pp. 787-800 (1986).
Murray, K.J. et al., Potential Use of Selective Phosphodiesterase Inhibitors in the Treatment of Asthma, New Drugs for Asthma Therapy, Birkhauser Verlag Basel, pp. 27-46 (1991).
Saeki, T. et al., Isolation of Cyclic Nucleotide Phosphodiesterase Isozymes From Pig Aorta, Biochem,. Pharmacology, vol. 46, No. 5, pp. 833-839 (1993).
Turner, N. C. et al., Pulmonary effects of type V cyclic GMP specific phosphodiesterase inhibition in anaesthetized guinea-pig, Br. J. Pharmacol., vol. 111, 1198-1204 (1994).
Ferreira, S.H. et al., The molecular mechanism of action of peripheral morphone analgesia: stimulation of the cGMP system via nitric oxide release, European Journal of Pharmacology, 201 pp. 121-122 (1991).
Hidaka, H. et al., Selective Inhibitors of Three Forms of Cyclic Nucleotide Phosphodiesterase--Basic and Potential Clinical Applications, vol. 16, Advances in Cyclic Nucleotide and Protein Phosphorylation Research, pp. 245-259 (1984).
Tulshian, D. et al., Synthesis and Phosphodiesterase Activity of Carboxylic Acid Mimetics of Cyclic Guanosine 3", 5"-Monophosphate,J. Med. Chem, vol. 36, 1210-1220 (1993).
Yasumoto, T. et al., Properties of Base-Substituted and Carboxyl-Esterified Analogues of Griseolic Acid, a Potent cAMP Phosphodiesterase Inhibitor, Biochemical Pharmacology, vol. 43, No. 10, pp. 2073-2081 (1992).
Broughton, B.J. et al., Antiallergic Activity of 2-Phenyl-8-azapruin-6-ones, Journal of Medicinal Chemistry, vol. 18, No. 11, pp. 1117-1118 (1975).
Kodama, K. et al., Effects of a novel, selective and potent phosphodiesterase type V inhibitor, E4021, on myocardial ischemia in guinea pigs, Euro. J. of Pharma. 263, pp. 93-99 (1994).
Zacharski, L. R. et al., Effect of Mopidamol on Survival in Carcinoma of the Lung and Colon: Final Report of Veterans Adminstration Cooperative Study No. 188, J. of the Nat'l. Cancer Inst., vol. 80, No. 2, pp. 90-96 (1988).
Lichtner, R. B. et al., The Pyrimido-pyrimidine Derivatives RA 233 adn RX-RA 85 affect Growth and Cytoskeletal Organization of Rat Mammary Adenocarcinoma Cells, Eur. J. Cancer Clin. Oncol., vol. 23, No. 9, pp. 1269-1275 (1987).
Janik, P. et al., Inhibiton of Growth of Primary and Metastatic Lewis Lung Carcinoma Cells by the Phosphodiesterase Inhibitor Isobutylmethylxanthine, Cancer Res. vol. 40, pp. 1950-1954, (Jun., 1980).
Bergstrand, Hakan et al., Effects of Antiallergic Agents, Compound 48/80, and Some Reference Inhibitors on the Activity of Partially Purfied Human Lung Tissue Adenosine Cyclic 3', 5'-Monophosphate and Guanosine Cyclic 3', 5'-Monophosphate Phosphodiesterases, Molecular Pharmacology, 13, pp. 38-43 (1976).
Drees, Markus et al., 3', 5'-Cyclic Nucleotide Phosphodiesterase in Tumor Cells as Potential Target for Tumor Growth Inhibition, Cancer Research 53, pp. 3058-3061 (1993).
Semmler, J. et al., Xanthine derivatives: comparison between suppression of tumor necrosis factor-x production and inhibition of cAMP phosphodiesterase activity, Immunology 78, pp. 50-525 (1993).
Clarke, W.R. et al., The type III phosphodiesterase inhibitor milrinone and type V PDE inhibitor dipyridamole individually and synergistically reduce elevated pulmonary vascular resistance (Abstract Only), Pulm. Pharmacol., 7(2) pp. 81-89, (1994).
Raeburn, David et al., Effects of isoenzyme-selective inhibitors of cyclic nucleotide phosphodiesterase on microvascular leak in guinea pig airways in vivo (Abstract Only), J. Pharmacol. Exp. Ther., 267(3), pp. 1147-1151 (1993).
Marcoz, P. et al., Modulation of rat thymocyte proliferative response through the inhibition of different cyclic nucleotide phosphodiesterase isoforms by means of selective inhibitors and cGMP-elevating agents (Abstract Only), Mol. Pharmacol. 44(5) pp. 1027-1035 (1993).
Barnett
Brendel Klaus
Gross Paul
Pamukcu Rifat
Sperl Gerhard
Cell Pathways Inc.
Owens Amelia
University of Arizona
LandOfFree
Lactone compounds for treating patient with precancerous lesions does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Lactone compounds for treating patient with precancerous lesions, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Lactone compounds for treating patient with precancerous lesions will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-1206387