Recombinant human erythropoietin mutants

Organic compounds -- part of the class 532-570 series – Organic compounds – Carbohydrates or derivatives

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

530351, 424 851, C12N 1518, C07K 14505, A61K 3818

Patent

active

060489715

ABSTRACT:
DNA encoding modified, secretable erythropoietin proteins whose ability to regulate the growth and differentiation of red blood cell progenitors are different from the wildtype recombinant erythropoietin and to methods of modifying or altering the regulating activity of a secretable erythropoietin and using modified secretable erythropoietin proteins.

REFERENCES:
patent: 4677195 (1987-06-01), Hewick et al.
patent: 4703008 (1987-10-01), Lin
patent: 4732889 (1988-03-01), Cynshi et al.
patent: 4745099 (1988-05-01), Akamatsu et al.
patent: 4835260 (1989-05-01), Shoemaker
patent: 4954437 (1990-09-01), Beck et al.
patent: 5614184 (1997-03-01), Sytkowski et al.
Wen, D., et al. "Erythropoietin Structure-Function Relationships: High Degree of Sequence Homology Among Mammals." Blood 82(5): 1507-16 (1993).
Ho, V. et al., "Use of a Marked Erythropoietin Gene for Investigation of Its Cis-acting Elements," The Journal of Biological Chemistry, 270(17):10084-10090 (Apr. 28, 1995).
McGary, E.C. et al., "Post-transcriptional Regulation of Erythropoietin mRNA Stability by Erythropoietin mRNA-binding Protein," The Journal of Biological Chemistry, 272(13):8628-8634 (Mar. 28, 1997).
Blanchard, K.L. et al., "Hypoxic Induction of the Human Erythropoietin Gene: Cooperation between the Promoter and Enhancer, Each of Which Contains Steroid Receptor Response Elements," Molecular and Cellular Biology, 12(12):5373-5385 (Dec. 1992).
Krystal, G., "A Simple Microassay for Erythropoietin Based on .sup.3 H-Thymidine Incorporation into Spleen Cells from Phenylhydrazine Treated Mice," Exp. Hematol., 11(7): 649-660 (1983).
Jacobs, K., et al., "Isolation and Characterization of Genomic and cDNA clones of Human Erythropoietin," Nature, 313: 806-810 (1985).
Sytkowski, A.J., et al., "Isolation and Characterization of an Anti-peptide Monoclonal Antibody to Human Erythropoietin," J. of Biol. Chem., 260(27): 14727-14731 (1985).
Sytkowski A.J., et al., "Immunochemical Studies of Human Erythropoietin Using Site-Specific Anti-Peptide Antibodies," J. of Biol. Chem., 262(3): 1161-1165 (1987).
Wognum, A.W., et al., "Use of a Sensitive Bioimmunoabsorbent Assay to Isolate and Characterize Monoclonal Antibodies to Biologically Active Human Erythropoietin," Blood, 71(6): 1731-1737 (1988).
Dube, S., et al., "Glycosylation at Specific Sites of Erythropoietin is Essential for Biosynthesis, Secretion, & Biological Function," J. of Biol. Chem., 263(33): 17516-17521 (1988).
Boissel, J.P., et al., "Erythropoietin Structure-Function Relationships," In The Biology of Hematopoisis, N. Dainiak et al., eds. (NY: Wiley-Liss, Inc.), pp. 227-232 (1990).
Yoshimura, A., et al., "Friend Spleen Focus-Forming Virus Glycoprotein gp55 Interacts With the Erythropoietin Receptor in the Endoplasmic Reticulum and Affects Receptor Metabolism," Proc. Natl. Acad. Sci USA, 87: 4139-4143 (1990).
Chern. J., et al., "Erythropoietin Activates the Receptor in Both Rauscher & Friend Murine Erythroleukemia Cells," J. of Biol. Chem., 266(4): 2009-2012 (1991).
Watowich, S.S., et al., "Homodimerization and Constitutive Activation of the Erythropoietin Receptor," Proc. Natl. Acad. Sci USA, 89: 2140-2144 (1992).
Fibi, M.R., et al., "Evidence for the Location of the Receptor-Binding Site of Human Erythropoietin at the Carboxyl-Terminal Domain," Blood, 77(6): 1203-1210 (1991).
Grodberg, J., et al., "Defining Human Erythropoietin Hormone Receptor Interactions by Site-Directed Mutagenesis," Exp. Hematol., 20(6): 755 (Abstract 195) (Jul. 1992).
Higuchi, M., et al., "Role of Sugar Chains in the Expression of the Biological Activity of Human Erythropoietin," J. of Biol. Chem., 267(11): 7703-7709 (1992).
Patel, H.R., et al., "Erythropoietin Causes Changes in Early Response Gene Expression Via Multiple Signaling Pathways: Distinct Roles for Protein Kinases & Phosphatases," Blood, 78(10): 304a (Abstract 1205) (Nov. 15, 1991).
Spangler, R., et al., "Erythropoietin Increases c-myc mRNA by a Protein Kinase C-dependent Pathway," J. Biol. Chem., 266(2): 681-684 (1991).
Chern, Y., et al, "Structural Role of Amino Acids 99-110 in Recombinant Human Erythropoietin," Eur. J. Biochem., 202: 225-229 (1991).
Yamaguchi, K., et al., "Effects of Site-Directed Removal of N-Glycosylation Sites in Human Erythropoietin on Its Production & Biological Properties," J. Biol. Chem., 266(30): 20434-20439 (1991).
McDonald, J.D., et al., "Cloning Sequencing and Evolutionary Analysis of the Mouse Erythropoietin Gene," Mol. and Cell Biol., 6(3): 842-848 (1986).
Boissel, J-P., et al., "Erythropoietin Structure-Function Relationships. Mutant Proteins that Test a Model of Tertiary Structure," J. Biol. Chem. 268(21): 15983-15993 (1993).
Grodberg, J., et al., "Characterizing Arginine 103 Side Chain Contributions to Human Erythropoietin's Biological Activity by Site-Directed Mutagenesis," Exp. Hematol., 21(8): (Abstract 632) (Aug. 1993).
Boissel, J.P., et al., "Erythropoietin (EPO) Structure-Function Relationships: Identification of Functionally Important Domains," Blood 82(10): 316a (Abstract 1250) (Nov. 15, 1993).
Powell, J.S., et al., "Human Erythropoietin Gene: High Level Expression in Stably Transfected Mammalian Cells and Chromosome Localization," Proc. Natl. Acad. Sci. USA, 83:6465-6469 (1986).
Tsuda, E., et al., "The Role of Carbohydrate in Recombinant Human Erythropoietin," Eur. J. Biochem., 188: 405-411 (1990).
Elder, G.E., et al., "In Vitro Bioassay of Erythropoietic Activity in Serum Using Mouse Spleen Cells. The Effect of Heat Inactivation on Serum Erythropoietin," Blood Cells, 11: 409-416 (1986).
Endo, Y., et al., "Heat-Induced Aggregation of Recombinant Erythropoietin in the Intact of Deglycosylated States as Monitored by Gel Permeation Chromatography Combined with a Low-Angle Laser Light Scattering Technique," J. Biochem., 112: 700-706 (1992).
Chern, Y., et al., "Potentiation of the Erythropoietin Response by Dimethyl Sulfoxide Priming of Erythroleukemia Cells: Evidence for Interaction of Two Signaling Pathways," Blood, 76(11): 2204-2209 (Dec. 1, 1990).
Yonekura, S., et al., "Erythropoietin Receptors Induced by Dimethyl Sulfoxide Exhibit Positive Cooperatively Associated with an Amplified Biologic Response," Proc. Natl. Acad. Sci. USA, 88: 2535-2539 (1991).
McMahon, G.F., et al., "Pharmacokinetics and Effects of Recombinant Human Erythropoietin After Intravenous and Subcutaneous Injections in Healthy Volunteers," Blood, 76(9): 1718-1722 (Nov. 1, 1990).
Spivak, J.L. and Hogans, B.B., "The In Vivo Metabolism of Recombinant Human Erythropoietin in the Rat," Blood, 73(1): 90-99 (Jan. 1989).
Showers, M., et al., "ALA Replacements Increase the Mitogenic Activity of Human Erythropoietin," Blood, 84(10), Suppl. 1: 369a (Abstract 1460) (Nov. 15, 1994).
Shoemaker, C.B., et al., "Murine Erythropoietin Gene: Cloning, Expression, and Human Gene Homology," Mol. Cell. Biol., 6:849-858 (1986).
Cunningham et al., "High-Resolution Epitope Mapping of hGH-Receptor Interactions by Alanine-Scanning Mutagenesis," Science 244:1081-1085 (1989).

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Recombinant human erythropoietin mutants does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Recombinant human erythropoietin mutants, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Recombinant human erythropoietin mutants will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-1177632

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.