Organic compounds -- part of the class 532-570 series – Organic compounds – Carbohydrates or derivatives
Patent
1997-12-18
2000-05-09
Smith, Lynette R. F.
Organic compounds -- part of the class 532-570 series
Organic compounds
Carbohydrates or derivatives
4353201, 435440, C12N 1532, C12N 1582
Patent
active
060605944
ABSTRACT:
Disclosed are nucleic acid segments comprising synthetically-modified genes encoding Coleopteran-toxic B. thuringiensis .delta.-endotoxins. Also disclosed are methods of using these genes for the recombinant expression of polypeptides, the preparation of vectors containing the genes, and methods for transforming suitable host cells.
REFERENCES:
patent: 4797279 (1989-01-01), Karamata et al.
patent: 4910016 (1990-03-01), Gaertner et al.
patent: 5024837 (1991-06-01), Donovan et al.
patent: 5071654 (1991-12-01), English
patent: 5187091 (1993-02-01), Donovan et al.
patent: 5500365 (1996-03-01), Fischhoff et al.
patent: 5567862 (1996-10-01), Adang et al.
patent: 5659123 (1997-08-01), Van Rie et al.
Almond and Dean, "Suppression of protein structure destabilizing mutations in Bacillus thuringiensis .delta.-Endotoxins by second site mutations," Biochemistry, 32:1040-1046, 1993.
Angsuthanasamnbat et al., "Effects on toxicity of eliminating a cleavage site in a predicted interhelical loop in Bacillus thuringiensis CryIVB .delta.-endotoxin," FEMS Microbiol. Lett., 111:255-262, 1993.
Aronson et al., "Mutagenesis of specificity and toxicity regions of a Bacillus thuringiensis protoxin gene." J. Bacteriol., 177:4059-4065, 1995.
Baum, "TnpI recombinase: Identification of sites within Tn5401 required for TnpI binding and site-specific recombination," J. Bacteriol., 177(14):4036-4042, 1995.
Caramori et al., "In vivo generation of hybrids between two Bacillus thuringiensis insect-toxin-encoding genes," Gene, 98:37-44, 1991.
Carroll et al., "Proteolytic processing of a coleopteran-specific .delta.-endotoxin produced by Bacillus thuringiensis var. tenebrionis," Biochem. J., 261:99-105, 1989.
Chen et al., "Mutations in domain I of Bacillus thuringiensis .delta.-endotoxin CryIAb reduce the irreversible binding of toxin to Manduca sexta brush border membrane vesicles," J. Biol. Chem., 270:6412-6419, 1995.
Chen et al., "Site-directed mutations in a highly conserved region of Bacillus thuringiensis .delta.-endotoxin affect inhibition of short circuit current across Bombyx mori midguts," Proc. Natl. Acad. Sci. USA, 90:9041-9045, 1993.
Chowrira and Burke, "Extensive phosphorothioate substitution yields highly active and nuclease-resistant hairpin ribozymes," Nucl. Acids Res., 20(11):2835-2840, 1992.
Cody et al., "Purification and crystallization of insecticidal .delta.-endotoxin CryIIIB2 from Bacillus thuringiensis," Proteins: Struct. Funct. Genet., 14:324, 1992.
Cummings and Ellar, "Chemical modification of Bacillus thuringiensis activated .delta.-endotoxin and its effect on toxicity and binding to Manduca sexta midgut membranes," Microbiol., 140:2737-2747, 1994.
Diehn et al., "Problems that can limit the expression of foreign genes in plants: lessons to be learned from B.t. toxin genes," Genet. Engineer., 18:83-99, 1996.
Donovan et al., "Isolation and characterization of EG2158, a new strain of Bacillus thuringiensis toxic to coleopteran larvae, and nucleotide sequence of the toxin gene," Mol. Gen. Genet., 214:365-372, 1988.
English and Slatin, "Mode of action of delta-endotoxins from Bacillus thuringiensis: A comparison with other bacterial toxins," Insect Biochem. Mol. Biol., 22(1):1-7, 1992.
English et al., "Mode of action of CryIIA: a Bacillus thuringiensis Delta-endotoxin," Insect Biochem. Molec. Biol., 24(10):1025-1035, 1994.
Gazit and Shai, "Structural and functional characterization of the .alpha.-5 segment of Bacillus thuringiensis .delta.-endotoxin," Biochemistry, 32:3429-3436, 1993.
Gazit and Shai, "The assembly and organization of the .alpha.5 and .alpha.7 helices from the pore-forming domain of Bacillus thuringiensis .delta.-endotoxin," J. Biol. Chem., 270:2571-2578, 1995.
Ge et al., "Functional domains of Bacillus thuringiensis insecticidal crystal proteins: refinement of Heliothis virescens and Trichoplusia ni specificity domains on CryIA(c)," J. Biol. Chem., 266:17954-17958, 1991.
Grochulski et al., "Bacillus thuringiensis CryIA(a) insecticidal toxin: crystal structure and channel formation," J. Mol. Biol., 254:447-464, 1995.
Hofte et al., "Structural and functional analysis of a cloned delta endotoxin of Bacillus thuringiensis berliner 1715," Eur. J. Biochem., 161:273-280, 1986.
Johnson et al., "Insecticidal activity of EG4961, a novel strain of Bacillus thuringiensis toxic to larvae and adults of Southern Corn Rootworm (Coleoptera: Chrysomelidae) and Colorado Potato Beetle (Coleoptera: Chrysomelidae)," J. Econ. Entomol., 86(2):330-333, 1993.
Kwak et al., "Exploration of receptor binding of Bacillus thuringiensis toxins," Mem. Inst. Oswaldo, 90:75-79, 1995.
Lambert et al., "A Bacillus thuringiensis insecticidal crystal protein with a high activity against members of the family Noctuidae," Appl. Environ. Microbiol., 62:80-86, 1996.
Lee et al., "Domain III exchanges of Bacillus thuringiensis CryIA toxins affect binding to different gypsy moth midgut receptors," Biochem. Biophys. Res. Commun., 216:306-312, 1995.
Lee et al., "Location of a Bombyx mori receptor binding region on a Bacillus thuringiensis .delta.-endotoxin," J. Biol. Chem., 267:3115-3121, 1992.
Lu et al., "Identification of amino acid residues of Bacillus thuringiensis .delta.-endotoxin CryIAa associated with membrane binding and toxicity to Bombyx mori," J. Bacteriol., 176:5554-5559, 1994.
Rajamohan et al., "Role of domain II, loop 2 residues of Bacillus thuringiensis CryIAb .delta.-endotoxin in reversible and irreversible binding to Manduca sexta and Heliothis virescens," J. Biol. Chem., 271:2390-2397, 1996.
Rajamohan et al., "Single amino acid changes in domain II of Bacillus thuringiensis CryIAb .delta.-endotoxin affect irreversible binding to Manduca sexta midgut membrane vesicles," J. Bacteriol., 177:2276-2282, 1995.
Rupar et al., "Two novel strains of Bacillus thuringiensis toxic to Coleopterans," Applied Environ. Microbiol., 57(11):3337-3344, 1991.
Slaney et al., "Mode of action of Bacillus thuringiensis toxin CryIIIA: An analysis of toxicity in Leptinotarsa decemlineata (Say) and Diabrotica undecimpunctata howardi Barber," Insect Biochem. Molec. Biol., 22:9-18, 1992.
Slatin et al., "Delta-endotoxins form cation-selective channels in planar lipid bilayers," Biochem. Biophys. Res. Comm., 169(2):765-772, 1990.
Smedley and Ellar, "Mutagenesis of three surface-exposed loops of a Bacillus thuringiensis insecticidal toxin reveals residues important for toxicity, receptor recognition and possibly membrane insertion," Microbiology, 142:1617-1624, 1996.
Smith et al., "Mosquitocidal activity of the CryIC .delta.-endotoxin from Bacillus thuringiensis subsp. aizawai," Appl. Environ. Microbiol., 62(2):680-684, 1996.
Smith and Ellar, "Mutagenesis of two surface-exposed loops of the Bacillus thuringiensis Cry1C .delta.-endotoxin affects insecticidal specificity," Biochem. J., 302:611-616, 1994.
Von Tersch et al., "Membrane permeabilizing activity of Bacillus thuringiensis Coleopteran-active toxins CryIIIB2 and CryIIIB2 domain 1 peptides," Appl. Env Microbiol., 60:3711-3717, 1994.
Walters et al., "Ion channel activity of N-terminal fragments from CryIA(c) delta-endotoxin," Biochem. Biophys. Res. Commun., 196(2):921-926, 1993.
Wolfersberger et al., "Site-directed mutations in the third domain of Bacillus thuringiensis .delta.-endotoxin CryIAa affect its ability to increase the permeability of Bombyx mori midgut brush border membrane vesicles," Appl. Environ. Microbiol., 62(1):279-282, 1996.
Wu and Dean, "Functional significance of loops in the receptor binding domain of Bacillus thuringiensis CryIIIA .delta.-endotoxin," J. Mol. Biol., 255:628-640, 1996.
Wu and Aronson, "Localized mutagenesis defines regions of the Bacillus thuringiensis .delta.-endotoxin involved in toxicity and specificity," J. Biol. Chem., 267:2311-2317, 1992.
Zhang and Matthews, "Conservations of solvent-binding sites in 10 crystal forms of T4 lysozyme," Prot. Sci., 3:1031-1039, 1994.
Brussock Susan M.
Bryson James W.
English Leigh H.
Kulesza Caroline A.
Malvar Thomas M.
Ecogen Inc.
Monsanto Company
Nelson Amy J.
Smith Lynette R. F.
LandOfFree
Nucleic acid segments encoding modified bacillus thuringiensis c does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Nucleic acid segments encoding modified bacillus thuringiensis c, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Nucleic acid segments encoding modified bacillus thuringiensis c will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-1066362