Production of optically active 1,3-butanediol by asymmetric assi

Chemistry: molecular biology and microbiology – Process of utilizing an enzyme or micro-organism to destroy... – Resolution of optical isomers or purification of organic...

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

435158, 435 21, 435938, C12P 718

Patent

active

052197573

DESCRIPTION:

BRIEF SUMMARY
DESCRIPTION



Field of Industrial Application

The present invention relates to a process for producing optically active 1,3-butanediol with a microorganism.
Optically active 1,3-butanediol is an important starting material for various medicines such as antibiotics.


Prior Art

Known processes for producing optically active 1,3-butanediol include (1) a process wherein a chemically synthesized mixture of 1,3-butanediol racemates is optically resolved with an optical resolving agent (cf. Japanese Patent Laid-Open No. 191631/1986) and (2) a process wherein it is produced from 4-hydroxy-2-butanone by asymmetric synthesis with a Raney nickel catalyst treated with an optically active compound [cf. Japanese Patent Laid-Open No. 204187/1983 and Bull. Chem. Soc. Jpn., 53, 1356 to 1360 (1980)]. However, both the processes (1) and (2) have a defect that expensive optical resolving agent and catalyst must be used and, in addition, the product obtained by the process (2) has a low optical purity. Under these circumstances, it is demanded to establish a process for producing optically active 1,3-butanediol having a high optical purity in an economically advantageous and convenient manner.


DISCLOSURE OF THE INVENTION

The present invention provides a process for producing optically active 1,3-butanediol which comprises either (1) treating a mixture of 1,3-butanediol enantiomers with a microorganism, which has been optimally treated, capable of asymmetrically assimilating said mixture, or (2) preparing a microorganism, which has been optionally treated, capable of asymmetrically reducing 4-hydroxy-2-butanone, and collecting optically active 1,3-butanediol.
The present invention involves (1) asymmetric assimilation and (2) reduction as follows: (1) a process for producing optically active 1,3-butanediol which comprises treating a mixture of 1,3-butanediol enantiomers with a microorganism, which has been optionally treated, capable of asymmetrically assimilating said mixture and collecting optically active 1,3-butanediol remaining intact, and (2) a process for producing optically active 1,3-butanediol which comprises treating 4-hydroxy-2-butanone with a microorganism, which has been optionally treated, capable of asymmetrically reducing 4-hydroxy-2-butane into either (R)-1,3-butanediol or (S)-1,3-butanediol and collecting the (R)-1,3-butanediol or (S)-1,3-butanediol thus formed.
The present invention will now be described in detail by referring to these two processes.


(1) Asymmetric assimilation

After intensive investigations made for the purpose of getting a microorganism usable for producing optically active 1,3-butanediol having a high optical purity by asymmetric assimilation, the inventors have found that a microorganism selected from among those belonging to the genera Brevibacterium, Candida, Enterobacter, Geotrichum, Klebsiella, Lodderomyces, Pseudomonas, Rhodotorula, Saccharomyces, Saccharomycopsis, Sterigmatomyces and Trichosporon is capable of asymmetrically assimilating a mixture of 1,3-butanediol enantiomers to leave (R)-1,3-butanediol intact, and that a microorganism selected from among those belonging to the genera Agrobacterium, Azotobacter, Bacillus, Brettanomyces, Candida, Citrobacter, Corynebacterium, Dekkera, Endomyces, Erwinia, Hansenula, Issatchenkia, Klebsiella, Kluyveromyces, Geotrichum, Micrococcus, Mycobacterium, Pachysolen, Paracoccus, Pichia, Protaminobacter, Pseudomonas, Saccharomyces, Saccharomycopsis, Selenotila, Serratia, Stephanoascus and Xanthomonas is capable of asymmetrically assimilating a mixture of 1,3-butanediol enantiomers to leave (S)-1,3-butanediol intact.
The microorganism usable in the present invention may be any of those belonging to the genus Brevibacterium, Candida, Enterobacter, Geotrichum, Klebsiella, Lodderomyces, Pseudomonas, Rhodotorula, Saccharomyces, Saccharomycopsis, Sterigmatomyces or Trichosporon capable of asymmetrically assimilating a mixture of 1,3-butanediol enantiomers to leave (R)-1,3-butanediol intact or any of those belonging to the genus Agrobacteriu

REFERENCES:
Levene et al., J. Biol. Chem., 94, pp. 361-366, (1931).
Neuberg et al., Biochem. Z., 92, pp. 96-110 (1918).
Murakami et al., Bulletin of the Chemical Society of Japan, vol. 53, No. 5, pp. 1356-1360, (1980).

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Production of optically active 1,3-butanediol by asymmetric assi does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Production of optically active 1,3-butanediol by asymmetric assi, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Production of optically active 1,3-butanediol by asymmetric assi will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-1042079

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.