Vacuum brake booster with mechanical emergency braking aid

Motors: expansible chamber type – Working member position feedback to motive fluid control – Plural input signal means for single motor valve

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C091S369200

Reexamination Certificate

active

06681680

ABSTRACT:

BACKGROUND OF THE INVENTION
The invention relates to a vacuum brake booster comprising a vacuum chamber and a working chamber separated from each other by a movable wall, a control valve which comprises a housing coupled workingly to said movable wall and which is capable of controlling the supply of atmospheric pressure or above-atmospheric pressure to the working chamber to achieve a pressure difference at the movable wall, and an emergency braking aid having a permanent magnet, which is disposed in the control valve housing, and an armature, which cooperates with the permanent magnet and in the event of emergency braking is drawn into abutment with the permanent magnet, with the result that the control valve is held open for the supply of atmospheric pressure or above-atmospheric pressure to the working chamber. The permanent magnet and the armature form a two-component magnetic module wherein a first component of the magnetic module is rigidly coupled to an actuating piston in actuating direction and a second component of the magnetic module is adapted to be coupled to the actuating piston at least in the actuating direction of the brake booster. In the context of the present invention, the term “actuating direction” always means the actuating direction of the brake booster.
Vacuum brake boosters have been known for quite some time and millions of them are being used to boost the actuating forces of a vehicle hydraulic brake system and therefore keep said forces at a level which is acceptable to the driver of a vehicle. Likewise known are so-called emergency braking aids, which are frequently also referred to as “brake assistants”. These are devices which provide a driver in the event of an emergency braking situation with increased braking power for substantially the same actuating force.
Emergency braking aids may be divided into electro-magnetically actuated and mechanically actuated systems. For reasons of cost, the use of a mechanical system is desired for applications in vehicles at the lower end of the price range.
A vacuum brake booster having such a mechanical emergency braking aid is known, for example, from WO 00/07862, corresponding U.S. Patent Application Publication 2001/0003947 A1 which is incorporated by reference herein. Said vacuum brake booster has a vacuum chamber and a working chamber separated from each other in a pressure-proof manner by a movable wall. A control valve, which has a housing coupled workingly to the movable wall, comprises an atmospheric valve seat which, to achieve a pressure difference at the movable wall, is capable of controlling the supply of atmospheric pressure to the working chamber in dependence upon the displacement of an input element of the brake booster. The input element is coupled in actuating direction to an actuating piston.
For improved boosting of the braking force in emergency braking situations, a mechanical emergency braking aid is disposed in the control valve housing. The emergency braking aid includes a two-component armature comprised of a permanent magnet and an armature. In the actuating direction, the armature cooperating with the permanent magnet is rigidly coupled to the input element via the actuating piston. A coupling device makes it possible to couple the armature to the permanent magnet in such a manner that the axial distance between the armature and the permanent magnet does not change as a braking operation commences.
The armature is resiliently preloaded counter to the actuating direction of the brake booster and, in the starting position of the control valve, is held at a first distance from the permanent magnet. In the course of an approach towards the permanent magnet, the armature, when it is less than a predetermined second distance away, which is smaller than the first distance, is pulled by the permanent magnet counter to the resilient preloading force acting upon the armature and with simultaneous cancellation of its, in actuating direction, rigid coupling to the input element into abutment with the permanent magnet.
The movement of the armature is transmitted to a valve sleeve, which is rigidly coupled to the armature and on its end facing the input element carries the atmospheric valve seat. When the emergency braking aid is activated, because of the coupling of armature and permanent magnet, the atmospheric valve is held open to the maximum extent. The maximum possible pressure difference therefore builds up, with the result that the maximum possible boosting force of the brake booster is achieved.
To deactivate an activated emergency braking aid, the actuating force summoned up by the driver has to be reduced. As a result of the reduction of the actuating force summoned up by the driver, the actuating piston moves counter to actuating direction and a catch rigidly coupled to the actuating piston separates the armature from the permanent magnet.
So long as the full-output pressure of the brake booster, i.e. the maximum pressure difference at the movable wall, is not attained, a defined actuating speed excess is needed to move the armature closer than the second distance to the permanent magnet and hence achieve the coupling of armature and permanent magnet. However, once the full-output pressure is attained, a further increase of the actuating force summoned up by the driver is, independently of the actuating speed, always combined with an approach of armature and permanent magnet. Thus, even if the actuating force is increased slowly, e.g. when a vehicle is stopped at traffic lights, after the full-output pressure is attained an inappropriate coupling of armature and permanent magnet may occur. The emergency braking aid is activated even though an emergency braking situation does not exist.
To deactivate the inappropriately activated emergency braking aid, the driver—just as in the case of appropriate activation after emergency braking—has to ease off the brake pedal to a relatively large extent before the brake booster drops back to its original performance characteristic and may once more be apportioned in the usual manner by the driver.
The driver is not accustomed to the departure from the usual performance characteristic which occurs upon activation of the emergency braking aid in non-emergency braking situations and he therefore perceives it to be a disadvantage.
SUMMARY OF THE INVENTION
The object of the invention is to provide a brake booster with a mechanical emergency braking aid, in which activation of the emergency braking aid may be effected only in emergency braking situations.
Proceeding from a brake booster of the type described initially, said object is achieved according to the invention in that a coupling device is provided, which may couple the second, as yet uncoupled component of the magnetic module at least in actuating direction of the brake booster to the actuating piston, when increased reaction forces are introduced counter to the actuating direction of the brake booster into the coupling device.
In a non-emergency braking situation, i.e. in the case of e.g. a slow increase of the actuating force, both the armature and the permanent magnet are coupled at least in actuating direction to the actuating piston by the coupling device. As a result of the simultaneous coupling of both armature and permanent magnet to the actuating piston the mutual distance of the two components of the magnetic module cannot be reduced any further. Armature and permanent magnet are therefore prevented from moving so close to one another that they are less than the previously mentioned second distance apart and a coupling of armature and permanent magnet occurs.
According to the invention, the hydraulic reaction forces of the master brake cylinder acting counter to actuating direction upon the actuating piston are used as a criterion for the existence of an emergency braking situation. Given a comparatively slow increase of the actuating force summoned up by the driver, i.e. in a non-emergency braking situation, the reaction forces of the master brake cylinder are relatively high.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Vacuum brake booster with mechanical emergency braking aid does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Vacuum brake booster with mechanical emergency braking aid, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Vacuum brake booster with mechanical emergency braking aid will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3259785

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.