Rosin-fatty acid vinylic polyamide polymer supported latices

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – At least one aryl ring which is part of a fused or bridged...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C524S457000, C524S458000, C524S270000, C524S272000, C106S031730

Reexamination Certificate

active

06437037

ABSTRACT:

FIELD OF INVENTION
This invention relates to novel rosin-fatty acid vinylic polyamide polymer supported latex compositions and the process for preparing them. More particularly, the invention concerns novel rosin-fatty acid vinylic polyamide graft polymer supported latex compositions which exhibit properties that make them useful as components of inks for printing on plastic films.
BACKGROUND OF THE INVENTION
Acrylic and styrenic latices are widely used to formulate water-based printing inks, particularly for porous substrates such as paper or board. They are less widely used, however, for printing on non-porous substrates such as metal foils and plastic films. This is due primarily to their poor adhesion to these substrates relative to solvent-based inks or to aqueous inks based on more expensive resins such as polyurethanes.
The overwhelming majority of acrylic latices used in water-based printing inks are of a class called “supported” or “fortified” latices. These terms refer to the presence of a water-soluble polymer in the external (i.e. aqueous) phase of the latex. This soluble resin modifies the surface tension and rheology of the latex and the ink made from it in such a way as to improve its printing performance by facilitating flow in and out of the cells in printing press cylinders or plates. In addition, the soluble support resin increases the mechanical stability of the latex with respect to the shearing forces that an ink undergoes during printing.
Numerous attempts have been made to improve the adhesion of aqueous inks or coatings based on acrylic latices to various substrates, particularly by incorporating nitrogen-based functionality (such as amide, urea, or urethane groups) into either the internal phase or the support resin. Examples of incorporating nitrogen functionality into the internal polymer phase can be found in U.S. Pat. No. 4,111,877 (which teaches the use of urea-functional allylic monomers), U.S. Pat. Nos. 4,487,940, 4,526,915, and 6,069,275 (which teach the use of acrylic monomers containing urea and urethane groups), and U.S. Pat. No. 5,693,702 (which teaches the use of monomers containing urethane groups). An example of incorporating nitrogen functionality into the support resin is found in U.S. Pat. No. 5,656,679, which teaches the use of amide-containing rosin resins as support resins for acrylic emulsions. While the latices disclosed in this patent provide inks that have good peel strength in lamination applications, a problem exists in that these latices are generally deficient in adhesion as measured by the standard scotch tape pull test when employed in surface printing applications.
Therefore, an object of this invention is to solve this major problem by disclosing a method of producing rosin-fatty acid vinylic polyamide graft polymer latex compositions which exhibit properties that make them useful as components for formulating inks for printing on plastic films.
Another object of this invention is to disclose rosin-fatty acid vinylic polyamide polymer latex compositions.
SUMMARY OF THE INVENTION
The objects of this invention are met via the process of: (a) forming an vinylic resin in the presence of a mixture of unsaturated fatty acid and rosin, (b) maleating the rosin fatty acid vinylic mixture in the same reactor, (c) adding a pre-formed polyamide resin and fusing it with the maleated rosin-fatty acid vinylic resin mixture to produce a rosin-fatty acid vinylic polyamide graft polymer, and (d) reacting the polymer in an emulsion polymerization reaction with (meth)acrylic and/or styrenic monomers to produce a rosin-fatty acid vinylic polyamide graft polymer latex composition which exhibit improved adhesion to plastic films. Such latex compositions are useful as components for printing inks and other coating applications.
DESCRIPTION OF THE PREFERRED EMBODIMENT
The rosin-fatty acid vinylic polyamide polymer supported latex compositions are the products of the process of:
(A) reacting in an addition polymerization reaction:
(1) about 20.0% to about 60.0% by total weight of the reactants of a fatty acid rosin mixture comprising:
(a) about 10.0% to about 90.0% by total weight of the fatty acid rosin mixture of fatty acid, and
(b) about 10.0% to about 90.0% by total weight of the fatty acid rosin mixture of rosin; and
(2) about 40.0% to about 80.0% by total weight of the reactants of a monomer mixture comprising:
(a) about 15.0% to about 45.0% by total weight of the monomer mixture of a member selected from the group consisting of acrylic acid, methacrylic acid, fumaric acid, maleic anhydride, and combinations thereof,
(b) about 55.0% to about 85.0% by total weight of a vinylic monomer,
(c) about 0.5% to about 5.0% by total weight of the monomer mixture of a polymerization initiator,
(d) up to about 4.0% by total weight of the monomer mixture of a chain transfer agent, and
(e) up to about 30% by total weight of the monomer mixture of a hydrocarbon solvent, at a temperature in the range of about 135° C. to about 175° C. to produce a rosin-fatty acid vinylic polymer having a weight average molecular weight in the range of about 4,000 to about 12,000;
(B) reacting in an adduction polymerization reaction:
(1) about 88.0% to about 99.5% by total weight of the reactants of the rosin-fatty acid vinylic polymer, and
(2) about 0.5% to about 12.0% by total weight of the reactants of a member selected from the group consisting of &agr;,&bgr;-unsaturated carboxylic acids, &agr;,&bgr;-unsaturated carboxylic anhydrides, and combinations thereof at a temperature in the range of about 170° C. to about 240° C. to produce a maleated rosin fatty acid vinylic polymer;
(C) reacting in a condensation polymerization reaction:
(1) about 65.0% to about 95.0% by total weight of the reactants of the maleated rosin fatty acid vinylic polymer, and
(2) about 5.0% to about 35.0% by total weight of the reactants of a dimer acid-based polyamide resin at a temperature in the range of about 200° C. to about 280° C.; to produce a rosin-fatty acid vinylic polyamide polymer; and
(D) reacting in an emulsion polymerization reaction:
(1) about 4.0% to about 3 5.0% by total weight of the reactants of the rosin-fatty acid vinylic polyamide polymer,
(2) about 65.0% to about 96.0% by total weight of the reactants of a monomer selected from the group consisting of acrylic monomers, methacrylic monomers, styrenic monomers, and combinations thereof,
(3) from about 0.1% to about 3.0% by total weight of the reactants of a polymerization initiator, and
(4) up to about 12.0% by total weight of the reactants of a of a member selected from anionic surfactants, nonionic surfactants, and combinations thereof at a temperature in the range of about 40° C. to about 95° C. to produce the rosin-fatty acid vinylic polyamide polymer latex composition.
Preferred rosin-fatty acid vinylic polyamide polymer supported latex compositions are the products of the process of:
(A) reacting in an addition polymerization reaction:
(1) about 20.0% to about 60.0% by total weight of the reactants of a fatty acid rosin mixture comprising:
(a) about 20.0% to about 50.0% by total weight of the fatty acid mixture of fatty acid, and
(b) about 50.0% to about 80.0% by total weight of the fatty acid mixture of rosin; and
(2) about 40.0% to about 80.0% by total weight of the reactants of a monomer mixture comprising:
(a) about 20.0% to about 25.0% by total weight of the monomer mixture of a member selected from the group consisting of acrylic acid, methacrylic acid, fumaric acid, maleic anhydride, and combinations thereof,
(b) about 60.0% to about 70.0% by total weight of the monomer mixture of a vinylic monomer,
(c) about 1.0% to about 3.0% by total weight of the monomer mixture of a polymerization initiator,
(d) about 0.5% to about 2.0% by total weight of the monomer mixture of a chain transfer agent, and
(e) up to about 4.0% by total weight of the monomer mixture of a hydrocarbon solvent, at a temperature in the range of about 140° C. to about 170° C. to produce a rosin-fatty acid vinylic polymer having a weight average m

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Rosin-fatty acid vinylic polyamide polymer supported latices does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Rosin-fatty acid vinylic polyamide polymer supported latices, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Rosin-fatty acid vinylic polyamide polymer supported latices will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2962476

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.