Neck ring mechanism for glass forming machine

Glass manufacturing – Diverse distinct glassworking apparatus – Press means with blow means

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C065S232000, C065S234000, C065S240000, C065S261000, C065S264000, C065S323000, C065S359000, C065S361000, C425S450100, C425S541000

Reexamination Certificate

active

06314762

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to a neck ring mechanism for a glass forming machine of the individual section (I.S.) type. More particularly, this invention relates to an improved invert shaft element, which is often referred to as a rock shaft, and to the attachment of the arm segments of the neck ring mechanism to such invert shaft element.
BACKGROUND OF THE INVENTION
U.S. Pat. No. 3,617,233 (Mumford), which was assigned to a predecessor of the assignee of this application, the disclosure of which is incorporated by reference herein, describes a glass forming machine of the I.S. type, which is a type of forming machine that is widely used in forming various types of hollow glass containers. As described in the '233 patent or as is otherwise known, an I.S. machine has a multitude of side-by-side machine sections, such as six, eight, ten or even twelve sections, and containers are formed in each section, usually two, three or four at a time, in a two-step process. In the first of the steps, preforms of the containers, which are often called parisons or blanks, are formed by pressing or blowing gobs of molten glass in a first set of molds, often called blank molds, with each container parison being formed in an inverted orientation, that is, with its open end down. Each set of blank molds is made up of a separable pair of semi-cylindrical mold elements, which remain in end to end contact with one another throughout the blank molding step.
During the forming of glass parisons in an I.S. machine blank mold, the “finish” portion of the parison, which is the threaded or otherwise configured closure receiving portion at the open end, is formed by a separate annular neck mold, which is often referred to as a neck ring, each of which is made up of a separable pair of generally semi-cylindrical elements. The neck rings for each I.S. machine section are carried in a neck ring mechanism and remain in closing contact with the parisons at the conclusion of the blank molding step, when the elements of the blank molds separate to allow the parisons to be transferred to a second set of molds, often referred to as blow molds, for the blowing of parisons into containers in the final desired shape of the containers. The containers are held by the neck rings during their transfer from the blank molds to the blow molds, and the transfer is effected by inverting the neck ring mechanism through an arc of 180° to present the parisons, which remain grasped by the neck rings throughout the transfer step, at the blow molds, the parisons now being in upright orientations, with the finishes at the top, as a result of the inverting step.
When the parisons arrive at the blow molds, they are released by the neck rings to permit the neck ring mechanism to revert to its location at the blank mold station, by a movement in a reverse arc of 180°, to begin a repeat of the two-step manufacturing process. The neck ring mechanism is made up of a separable side by side pair of arm segments, and the segments separate at the blow mold station, which causes the elements of the neck ring assembly that are carried by the neck ring mechanism to separate, to thereby release the parisons into the blow molds. The alternate separation and rejoining of the neck ring mechanism arm elements is accomplished by a reciprocating motion of each element with respect to a horizontal shaft which passes through an end portion of such arm element, and the oscillation of the neck ring mechanism is caused by oscillating the shaft, which is often referred to as an invert shaft or a rock shaft, through an arc of 180°, each arm element being rotatable with, but not with respect to, the invert shaft. Another version of a neck ring mechanism for an I.S. glass forming machine is disclosed in U.S. Pat. No. 3,233,999 (Mumford), which was also assigned to a predecessor of the assignee of this application, the disclosure of which is also incorporated by reference herein.
Prior art neck ring mechanisms typically used spline connections between the arm elements and the invert shaft to permit sliding motion of the arm elements relative to the shaft while ensuring that the arm elements oscillate with the shaft. Such spline connections are subject to backlash, however, thus making precise positioning of the neck ring assembly arm elements with respect to one another difficult to achieve, and this factor, which can lead to improperly formed container finishes, worsens with usage due to wear. This requires frequent replacement of the neck ring mechanism, replacement of one or more of its elements being impractical, which involves a shutdown of the machine section for a prolonged duration with a loss of its productive capacity.
Another problem encountered with prior art neck ring mechanisms that involved a splined connection between the invert shaft and the neck ring arm elements is that the reciprocation of the arm elements relative to the invert shaft typically is primarily spring actuated, pneumatic actuation not being reliable due to air leakage in use because of the inability to properly seal a splined shaft against such leakage.
SUMMARY OF THE INVENTION
To correct the aforesaid and other problems associated with prior art I.S. machine neck ring mechanisms, there is provided a neck ring mechanism that does not rely on a splined connection between the invert shaft and the neck ring arm elements which are slidingly mounted on the invert shaft. The invert shaft of the present invention has a replaceable annular element whose exterior has the shape of a polygon, illustratively, a hexagon, and the neck ring mechanism arm segments which are slidingly mounted on the polygonal element have annular openings with complementary polygonal shaped openings for engaging the polygonal element of the invert shaft. Further, the neck ring mechanism arm elements have wear pads that are adjustable and replaceable on at least some of the sides of the polygon, illustratively, four such wear pads in the case of an invert shaft having a hexagonal configuration, to ensure close, relatively backlash-free contact between the neck ring mechanism arm elements and the invert shaft over a long period of time. This arrangement also provides a relatively simple procedure for replacing only the wear pads, and/or the polygonal element on the invert shaft, as opposed to the entire neck ring mechanism, when the wear pads can no longer be adjusted to ensure proper operation within acceptable backlash limits. If desired, the invert shaft and the annular, polygonal element may be constructed as a single element, rather than as separate, concentrically disposed elements; a combined, single element invert shaft with a surrounding polygonal surface will be somewhat more rigid than a assembly made up of separate elements.
The neck ring mechanism according to the present invention also utilizes pneumatic pressure for both opening and closing neck ring arm elements with respect to one another, with springs to assist in closing such elements, and to ensure that they remain closed in the event of the loss of air pressure. The use of a non-splined connection between the invert arm shaft and the neck ring mechanism arm elements carried thereby provides a large surface area to ensure that the pneumatic forces are sufficiently large to reliably and rapidly effect the opening action, and permits the pneumatic elements to be reliably sealed to thereby prevent loss of actuating air and to facilitate proper lubrication of the wear pads that provide sliding engagement between the neck ring mechanism elements and the invert shaft by a closed lubricant recirculating system.
Accordingly, it is an object of the present invention to provide an improved neck ring mechanism for a glass forming machine of the I.S. type. More particularly, it is an object of the present invention to provide a neck ring mechanism of the foregoing character that is readily adjustable from time to time to minimize backlash between its constituent elements. It is also an object of the present invention to provide a neck

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Neck ring mechanism for glass forming machine does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Neck ring mechanism for glass forming machine, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Neck ring mechanism for glass forming machine will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2587220

All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.